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Abstract
Global warming threatens the livelihoods of 600 million low-income agricultural

workers. I study how farmers learn about the environment and the consequences for
climate change adaptation. Rice farmers in Bangladesh must form beliefs about their
plot’s soil salinity, a climate danger exacerbated by rising sea levels that can be miti-
gated by planting salinity-tolerant seeds. Comparing beliefs about salt levels to agro-
nomic readings, I document both significant over- and underestimation of soil salinity
across individuals. I explain this pattern using a conceptual framework of belief forma-
tion featuring an identification problem: farmers must learn about multiple unobserved
environmental threats from ambiguous signals. As a result, farmers endogenously pro-
cess data in support of their priors, e.g., someone worried about high salinity will
interpret low yield as a sign of too much salt. Climate change amplifies this process
by systematically altering the environmental risks farmers consider most threatening.
I test and confirm the framework’s predictions using a lab-in-the-field exercise and two
natural experiments that isolate salient shocks that capture attention (e.g., tidal flood-
ing) and subtle shifts that go unnoticed (e.g., irrigation water contamination through
rising sea-levels). Despite equal effects on true salt levels, salient saltwater floods in-
crease salinity beliefs substantially more than does subtle irrigation intrusion. These
experiences shape how farmers interpret new data: past exposure to salient shocks in-
creases the mental link between low yield and salinity while subtle shocks reduce the
perceived diagnosticity of salinity clues. In large-scale field experiments, I show that
correcting misperceptions significantly alters farmers’ demand for salinity-tolerant seeds
with substantial consequences for profits. I use this experimental variation to estimate
and validate a structural model of seed choice that allows me to simulate counterfactual
policies and underscores the major economic impacts of environmental beliefs.
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1 Introduction
The environmental change stemming from global warming poses an existential threat,

especially to the 600 million smallholder farmers whose livelihoods directly depend on the
climate. To mitigate these dangers, individuals must adapt to the evolving world around
them. Optimal decision-making requires farmers to form accurate beliefs about the environ-
mental conditions they face, a potentially difficult task amid the subtle shifts (e.g., rising
sea levels) and salient shocks (e.g., flooding) characteristic of the warming planet.

How do farmers learn about and subsequently adapt to climate change? I examine this
belief formation process and its economic impacts in the context of soil salinity, flooding, and
monsoon intensity, three of the most important dimensions of global warming impacting the
world’s poor.1 Although these factors play a key role in agricultural choices, farmers have
little access to direct measurement of local climate conditions, creating scope for inefficient
behavior if farmers misperceive their environment. In this paper, I describe new data on
environmental beliefs and true conditions, build a simple conceptual framework of learning
amid global warming, use two quasi-natural experiments to test the theory’s key predictions,
present results from large-scale field experiments that quantify the economic impacts of
environmental beliefs, and estimate a structural model of adaptation decisions to conduct
policy counterfactuals. My study takes place in Bangladesh, ground zero for the harmful
consequences of climate change.

I first assess the accuracy of climate beliefs by collecting information on farmers’ percep-
tions and the ground truth. In a large-scale panel survey with nearly 2,300 rice farmers across
250 villages, I use a visual method to precisely elicit probabilistic beliefs in this low-numeracy
population. Focusing on the case of soil salinity, I measure farmers’ expectations about the
salt content of their own plots. This belief directly enters into high-stakes decision-making
as farmers choose whether or not to plant salinity-tolerant varieties, which grow better than
alternative seeds in high salt conditions but relatively worse in low ones. To capture the
ground truth in the absence of existing salinity data, I use agronomic sensors to test soil
conditions on farmers’ own plots during repeated readings over the agricultural season.

Despite a lack of access to measurement technology, average soil salinity beliefs across
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1 Salt-affected soils threaten agricultural productivity on 30% of irrigated land worldwide (Hopmans et al.,
2021). One in four people face significant flood risk, 89% of whom live in low- or middle-income countries
(Rentschler et al., 2022). The South Asian monsoon provides water to nearly a quarter of humanity.
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farmers exhibit remarkable accuracy when comparing perceptions to the direct soil read-
ings from farmers’ own plots.2 This overall relationship masks significant heterogeneity
across farmers, however. I find both significant over- and under-estimation of salinity levels,
with the vast majority of variation in farmers’ perceptions left unexplained by the ground
truth. As evidence that this dispersion reflects more than noise, I show that gaps between
soil salinity beliefs and the agronomic readings strongly predict farmers’ decisions to plant
salinity-tolerant seeds. Farmers with more land, more experience, and viewed as more skilled
by their neighbors hold more accurate beliefs, suggesting that learning frictions might play
a key role.

I document similar patterns of beliefs with respect to flooding and monsoon intensity.
To overcome biased coverage in existing flood data, I develop an approach to detect local
inundation at a daily level anywhere in the world by combining methods from machine
learning and geophysics in the analysis of satellite data.3 For rainfall, I use remote sensing
data combined with weather models to estimate the intensity of precipitation during the
monsoon season in each village. Similarly to the case of soil salinity, I find significant
heterogeneity in beliefs that predicts important economic behavior, including demand for a
flood insurance contract.

To explain this equilibrium distribution of environmental misperceptions, I use a simple
conceptual framework of belief formation amid climate change. Guided by the results of nar-
rative qualitative interviews and open-ended questions with my main sample, the framework
features farmers who infer environmental conditions by observing the output of their harvest
and physical characteristics of their crops. Different potential factors impacting yield mani-
fest themselves in the same way, creating an identification problem (Acemoglu et al., 2016).
A farmer observing low yield, for example, cannot distinguish between high soil salinity and
insufficient fertilizer as the root cause. As a result, I show that Bayesian farmers with arbi-
trarily small differences in initial beliefs will nevertheless fail to converge to agreement about
their local environment if they initially disagree on which environmental threat is more likely.
This gap occurs because farmers’ (potentially incorrect) ranking of priors exhibit persistence
2 In a regression of beliefs on the truth, I cannot reject that the coefficient on the agronomic readings equals
1 and the intercept term equals 0.
3 I describe this method in full in Patel (2023), where I also analyze the economic consequences of flooding and
how households adapt to inundation events. To briefly summarize the measurement approach, I estimate
surface water at a 90-meter resolution using radar-based satellites that can detect water with incredible
accuracy—notably by “seeing” through clouds to avoid the biases plaguing traditional satellite photos. The
infrequency of these satellites’ orbits severely restricts their ability to reliably detect all but the longest-lasting
floods. To fill in the gaps between satellite passes, I train a supervised machine learning algorithm to predict
this gold-standard measure using a battery of other remote sensing data available at a daily frequency. The
method effectively extends the coverage of advanced sensors and enables me to estimate two-decades worth
of daily flooding at a high spatial resolution.
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in this underidentified setting. Initial expectations about which environmental features mat-
ter most shape the interpretation of signals, so new data reinforces prior beliefs, similarly to
the literature on misspecified learning (Heidhues et al., 2021). For example, a farmer who
initially expects soil salinity to be high will (rationally) interpret a bad harvest as evidence
of too much salt, even if another factor might actually be the culprit.

How does global warming shape this belief formation process? I focus on how farmers
learn from two classes of signals characteristic of climate change: salient shocks and subtle
shifts in the environment.4 In the case of soil salinity, experiencing a flood with saline water
(perhaps due to a tidal surge, for instance) constitutes a salient shock by drawing farmers’
attention to the salt that has just been deposited onto the plot’s surface. Indeed, farmers
recall floods more than any other factor when recounting determinants of their soil’s salt
levels. By contrast, rising sea levels that cause the intrusion of ocean water into a farmer’s
irrigation source subtly shifts soil salinity, often occurring underground.

Experiencing a salient event instead of a subtle one can generate persistent gaps in learn-
ing. I show how this same prediction can emerge under three scenarios: a purely Bayesian
model with no behavioral friction, a Bayesian learner with imperfect information, and a
farmer facing attention costs. The most appropriate assumption will depend on the specific
context. In the pure Bayesian benchmark, if the informational content of the two types of
events differentially changes farmers’ beliefs going into the next period, then farmers will
endogenously interpret new data in different ways. This can sustain the initial disagree-
ment perpetually because farmers have shifted their expectations about the relative danger
of different environmental risks, which shapes how they process new information in this
underidentified setting. Second, even when the underlying informational content of salient
shocks and subtle shifts are the same, if farmers fail to notice the subtle changes in their
environment (because, for instance, the shifts occur underground), their beliefs will differ-
entially change, again leading to a gap in priors entering the next harvest. Third, I show
that even in the case where the core informational content is the same and farmers notice
both the salient shock and the subtle shift such that their posterior beliefs are identical,
learning differences can still emerge in equilibrium if the salient shock changes which envi-
ronmental threats come to mind upon seeing new data.5 The relevant mechanism depends
4 Although I use the terms salient shocks and subtle shifts, conceptually, both are “shocks” in the sense of
being unexpected deviations to the climate. The distinction between these two aspects of climate change
has been discussed in a psychology literature discussing learning and the adaptation process (Gilbert, 2006;
Johnson and Levin, 2009; Gifford, 2011). More broadly, economists have documented that behavior responds
more to drastic shifts than to gradual change and the difficulties of learning from infrequent hazards (Davis,
2004; Greenstone and Gallagher, 2008; Da et al., 2014; Wagner, 2022; Heft-Neal et al., 2023).
5 This distinction captures a key way in which my framework differs from other limited attention models
(e.g., Hanna et al. (2014)). Contrary to previous work, I assume farmers always incorporate all available
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on the environmental context, e.g., farmers might always notice any time it rains when form-
ing monsoon beliefs but not an incremental increase in groundwater salinity when learning
about their soil. Regardless of the channel, however, I show that in all cases, experiencing
a salient shock instead of a subtle shift can have permanent impacts on beliefs by altering
how farmers interpret new data, endogenously changing the diagnosticity of harvest signals
with respect to different environmental threats.

To empirically test these theoretical predictions, I first use a lab-in-the-field exercise
to document the presence of this identification problem. I show farmers pictures of rice
plants, each of which suffers from a difficult-to-observe threat, e.g., pests, disease, fungus, soil
salinity, etc. I elicit farmers’ beliefs about the potential underlying causes that could cause
the plant to look as it does in the image, for example by creating white spots on the leaves.
I first find substantial disagreement among farmers about how to interpret the physical
characteristics of a rice plant, even among images that an agronomist would characterize
as solely diagnostic of one particular issue. I next show that the errors are systematic: the
farmers most worried about salinity also tend to correctly identify salinity as the cause of
salinity images and incorrectly mention salinity as an explanation for the non-salinity images.
These patterns match the predictions of the conceptual framework, highlighting that farmers
face uncertainty about the meaning of the signals they observe and systematically interpret
these data in favor of the threats about which they are most concerned.

To provide causal evidence on the predictions of the conceptual framework, I use two
quasi-random natural experiments that separately identify the causal impact of salient shocks
and subtle shifts in soil salinity. The large geographic scope of my surveys—spanning ap-
proximately 15 percent of the land area of Bangladesh—provides substantial variation in
underlying climate to provide the statistical power for these analyses. First, I examine
flooding with salty water as an example of a salient shock. These floods deposit salt directly
onto plots. Underscoring the attention-grabbing nature of these environmental events, farm-
ers mention them more than any other factor when recalling the determinants of their soil’s
salinity. Second, I use salinity intrusion into irrigation water as an illustration of a subtle
shift. As sea levels rise, salty water from the ocean can contaminate the water used by
farmers to irrigate their rice plants, increasing soil salinity. This process—much of which
occurs underground—can easily go overlooked.

I use two distinct identification strategies to estimate the consequences of these environ-
mental events. First, I use a difference-in-differences design to isolate the causal impact of

data into their learning process—in this case, all observable features of their crops and land. In my set-up,
limited attention instead restricts the potential ways in which farmers interpret this information by operating
through the set of hypotheses considered as opposed to the data processed.
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experiencing a flood with more instead of less saline water—the salient environmental shock.
I hold constant any other general impacts of floods (unrelated to the saltiness of the water)
and the propensity to experience a salty flood by conditioning on a machine-learning gener-
ated measure of flood risk and the salt content of local river systems I calculate from data
collected at river stations scattered throughout the country. Second, I use a triple difference-
in-differences framework to capture idiosyncratic variation in salinity intrusion into irrigation
water—the subtle environmental shift. I compare villages with differentially higher exposure
to quasi-random deviations in sea-level rise and ocean salinity modulated by the village’s
distance to the coast, using satellite data to measure ocean height and salt levels.

Consistent with the conceptual framework’s predictions, I find asymmetric impacts of
these two types of climate signals on beliefs. Although both saltier floods and contaminated
irrigation water cause equivalent increases in true soil salinity as measured by the direct
agronomic sensors, only saltier floods—the salient shocks—move farmers’ perceptions of
their soil’s salt content, whereas salinity intrusion in irrigation—the subtle shift—has no
detectable impact on beliefs. The increase in salinity beliefs following a salty flood far exceeds
the true impact on soil conditions, ultimately generating overestimation of salt levels. In
line with the model’s key mechanisms, farmers also alter their interpretation of data on
crops and yield depending on the nature of their past environmental experiences. Salient
salty floods increase the likelihood that farmers use generic plant characteristics (e.g., plant
death) to learn about salinity. Groundwater intrusion, by contrast, increases the chance that
farmers attribute salinity-specific plant features to non-salinity explanations, reducing the
diagnosticity of salinity clues.

These environmental misperceptions have economic costs if they distort important deci-
sions, such as adaptation to climate change. To estimate the causal impact of environmen-
tal beliefs on technology adoption, I conduct large-scale field experiments among the same
sample of farmers in Bangladesh and find that beliefs have large impacts on agricultural
production decisions and profits. I first measure demand for the soil salinity information
I gathered from agronomic readings on farmers’ plots, using the Becker-DeGroot-Marschak
(BDM) method to preserve incentive compatibility. More than 80% of farmers have a positive
willingness-to-pay for these data. Embedding an experiment into this elicitation, I randomly
provide some farmers with data on soil readings. This information has large impacts on
farmers predictions of future soil salinity conditions, especially among those who held more
inaccurate beliefs initially. The treatment effects persist in a follow-up phone survey six
months later. To evaluate the consequences for technology adoption, I elicit willingness-to-
pay for a salinity-tolerant seed variety, again using BDM. Using treatment assignment as an
instrument, I find that 1 s.d. higher soil salinity beliefs causes a 41% increase in demand for
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salinity-tolerant seeds.
In a separate experiment, I show that the decision to adapt this climate adaptation

technology on the margin has high economic stakes. Farmers must match their seed choice
to the appropriate environmental conditions: salinity-tolerant varieties grow better than
alternatives in high salt conditions but relatively worse in low ones. Prior to planting, I
randomly offer some farmers a small amount of these salinity-tolerant seeds for free. This
offer causes a significant increase in the share of land planted with a salinity-tolerant variety,
especially among farmers who initially overestimated salinity conditions. I return to farm-
ers after harvest and find that farmers who overestimated salt levels and therefore planted
more salinity-tolerant seeds in inappropriate (low salinity) soil experience a large reduction
in agricultural profits, underscoring the risk of mismatching adaptation and environmental
conditions. These results extend beyond soil salinity: in an additional information experi-
ment providing farmers with information about flood risk, I again find strong evidence that
environmental beliefs impact economic decision-making, this time as measured by demand
for a flood insurance contract.

Finally, I quantify the role of misperceptions about the local environment in climate
change adaptation by using these randomized experiments to discipline a structural model
of seed choice. Given the non-linear relationship between technology adoption and beliefs,
the reduced form results alone do not reflect the overall effect of expectations on adaptation.
I estimate a mixed multinomial logit model with random coefficients to allow for correlation
of choices across different seeds (McFadden, 1974; Train, 2009). I estimate the parameters
among the treatment group from the seed experiment and then validate the predictions in the
control group.6 The model fit performs extremely well in this out-of-sample test: regressing
true seed choices on the predicted choice probabilities yields a coefficient indistinguishable
from 1. Using this structure, I simulate the adoption of salinity tolerant seeds under al-
ternative environmental beliefs. Conditional on the truth, moving from the 10th percentile
of salinity beliefs (significant underestimation of salt levels) to the 90th percentile (overes-
timation of salinity) increases take-up of salinity-tolerant seeds by 81%. I then examine a
scenario in which farmers can perfectly forecast their soil salinity conditions, and applying
the reduced form results from my seed experiment, I estimate that agricultural profits would
have been 16% higher during the 2022-23 season with correct beliefs.

Overall, these results suggest that policymakers can increase appropriate adaptation to
climate change by targeting information to places based off their previous exposure to salient
6 My approach follows an impressive set of papers combining experiments with structural estimation including
Todd and Wolpin (2006); Kremer et al. (2011); Duflo et al. (2012), and Attanasio et al. (2012). See Todd
and Wolpin (2023) for a review.
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shocks versus subtle shifts. The cost of collecting high-quality local data presents one po-
tential practical challenge. For instance, gathering salinity readings from farmers’ own plots
may be infeasible at scale. Motivated by this concern, I embed an additional arm into my
information experiment that provided farmers solely with geographically aggregated data on
salinity without any information specific to their own plots. Nevertheless, I find that farm-
ers have a high demand for this aggregate data and that the treatment effects on behavior
are even larger than those from providing the information specifically about farmers’ own
land. Collecting and distributing environmental data at scale presents a promising policy
for improving adaptation to climate change.

Related literature This study builds on three strands of literature. First, I contribute to
the rich set of papers examining adaptation to climate change and environmental threats.7

A growing body of work has considered these issues specifically in low- and middle-income
countries, where both the climate dangers and relevant margins of adaptation differ con-
siderably from richer settings.8 Much of the research on developing countries has focused
on rainfall and temperature, perhaps due to the relative accessibility of data.9 I focus on
floods, monsoon intensity, and especially soil salinity, a major yet understudied environ-
mental threat endangering agricultural households across the globe.10 Existing work has
7 See, among others, Bardhan (1983), Nordhaus (1991), Fafchamps (1993), Rosenzweig and Binswanger
(1993), Mendelsohn et al. (1994), Nordhaus (1994), Kahn (2005), Agrawal (2008), Deschênes and Greenstone
(2011), Acemoglu and et al. (2012), Boustan et al. (2012), Gallagher (2014), Hornbeck and Naidu (2014),
Hsiang and Jina (2014), Annan and Schlenker (2015), Currie et al. (2015), Desmet and Rossi-Hansberg
(2015), Bakkensen and Mendelsohn (2016), Barreca et al. (2016), Burke et al. (2016), Burke and Emerick
(2016), Auffhammer (2018), Kahn and Zhao (2018) Kocornik-Mina et al. (2020), Conte et al. (2021), Biardeau
et al. (2020), Giuliano and Nunn (2021), Kahn (2021), Peri and Robert-Nicoud (2021), Shapiro (2021), Baylis
and Boomhower (2022), Carleton et al. (2022), Cicala et al. (2022), Gandhi et al. (2022), Greenstone et al.
(2022), Moscona (2022), Nath (2022), Ostriker and Russo (2022), Acemoglu et al. (2023), Harstad (2023),
Bilal and Rossi-Hansberg (2023), Jedwab et al. (2023), Hornbeck (2023), Moscona and Sastry (2023), and
Grosset et al. (2023).
8 For examples of this work, see Jayachandran (2009), Burgess and Donaldson (2010), Burgess et al. (2012),
Tazhibayeva and Townsend (2012), Dar et al. (2013), Duflo et al. (2013), Mattoo and Subramanian (2013),
Mobarak and Rosenzweig (2013), Arceo-Gomez and Oliva (2014), Greenstone and Hanna (2014), Elliott et
al. (2015), Hanna and Oliva (2015), Pande et al. (2015), Cattaneo and Peri (2016), Costinot et al. (2016),
Taraz (2017), Auffhammer and Carleton (2018), Barwick et al. (2018), Casaburi and Willis (2018), Mullins
et al. (2018), Adhvaryu et al. (2019), Balboni (2019), Chang et al. (2019), Rangel and Vogl (2019), Blakeslee
et al. (2020), Ito and Zhang (2020), McGuirk and Nunn (2020), Khanna et al. (2021), Pople et al. (2021),
Chatterjee et al. (2022), Jack and et al. (2022), Macours et al. (2022), Ryan and Sudarshan (2022), Aker
and Jack (2023), Balboni et al. (2023), Barwick et al. (2023), Berkouwer and Dean (2023), Glennerster and
Jayachandran (2023), Greenstone et al. (2023), Hsiao (2023), Kochhar and Song (2023), Pelli et al. (2023),
and Kala et al. (2023) for a review.
9 See Jayachandran (2006), Deschênes and Greenstone (2007), Guiteras (2009), Dell et al. (2012), Mueller et
al. (2014), Burke et al. (2015), Burgess et al. (2017), Shah and Steinberg (2017), Kaur (2019), Garg et al.
(2020), Bharadwaj and Mullins (2021), and Somanathan et al. (2021), among others.
10 The papers considering the economics of salinity intrusion (all of which happen to focus in Bangladesh)
include Chen and Mueller (2018) on the migration consequences, Chen et al. (2022) on the effects on nighttime
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examined a host of important frictions to individual investment in adaptation, including
credit constraints (Lane, 2022), information asymmetries (Beaman et al., 2014; Mahadevan
et al., 2023), financial market imperfections (Karlan et al., 2014), supply-side frictions (Em-
erick et al., 2016), and market structures (Bhandari et al., 2022). I build on this research by
studying the role of environmental beliefs, a distinct potential barrier to coping with climate
change.11 I provide some of the first direct measurements of decision-relevant environmental
beliefs using frontier methods in the elicitation of subjective expectations and directly link
them to farmers’ choices.12 I show that these environmental beliefs have large consequences
for climate change adaptation even amid the host of other frictions documented in the lit-
erature, with important implications for policy. For example, my results suggest increasing
the measurement of soil salinity and disseminating those results could generate substantial
economic gains.

Second, I add to the literate on the economics of beliefs.13 Despite the important role
environmental perceptions in particular play in the economic decisions of smallholder farmers,
we have extremely little evidence on how individuals form these expectations and learn from
the signals around them (Kala, 2019). I am able to make progress on this question by
combining precise belief measurement across a large geographic area with quasi-random
natural experiments in past climate shocks. In doing so, I build on a growing set of papers
studying the role of past experiences in shaping beliefs.14 In my conceptual framework,
past experiences shape how Bayesian farmers interpret signals because they operate in a
data-scarce environment, giving priors outsized influence on the interpretation of new data

lights, and Guimbeau et al. (2023) on the health impacts.
11 Most direct measurement of climate beliefs has taken place in rich countries, and often on more general
aspects of the environment as opposed to those expectations that directly impact decision-making of the
surveyed individual (Baldauf et al., 2020; Decehzleprêtre et al., 2022). The other papers examining the
consequences of local environmental beliefs include Kala (2019), which inferred farmers beliefs about the
monsoon onset using a revealed preference argument about their planting behavior, Bakkensen and Bar-
rage (2022), which elicited flood risk beliefs in Rhode Island, and Zappalá (2023), which studied farmers’
perceptions about past droughts.
12 To my knowledge, one of the only other papers eliciting local, decision-relevant environmental beliefs in a
manner that can be precisely compared to true conditions is Gine et al. (2015), in which the authors document
predictors of farmers’ beliefs about monsoon onset in India, measuring expectations using similar techniques
to the ones I use here. See Delavande (2023) for a broader discussion of eliciting beliefs in low-numeracy
populations.
13 For a small subset of work on this topic, see Tversky and Kahneman (1974), Rabin (2002), Kling et al.
(2012), Chetty and Saez (2013), Bursztyn and Jensen (2015), Bénabou and Tirole (2016), Andrabi et al.
(2017), Banerjee et al. (2018), Chandrasekhar et al. (2018), Dizon-Ross (2019), Delavande and Zafar (2019),
Gabaix (2019), Bursztyn et al. (2020), Augenblick and Rabin (2021), Bushong et al. (2021), Rambachan
(2021), Deshpande and Dizon-Ross (2023), Bohren et al. (2023), Bursztyn et al. (2023), Sievert (2023), and
Augenblick et al. (2023). See Benjamin (2019) for a review of errors in probabilistic reasoning.
14 See, for instance, Mullainathan (2002), Malmendier and Nagel (2016), Enke et al. (2020), Malmendier
(2021), Graeber et al. (2022), Fudenberg et al. (2022), and Bordalo et al. (2023).
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(Acemoglu et al., 2016; Gentzkow et al., 2023).15 In an extension with limited attention, I
show that even when farmers learn from and observe the exact same data, if the nature of
past signals changes which environmental explanations most easily come to mind, learning
gaps can nevertheless occur. This mechanism is distinct from the set of inattention models in
which agents’ priors shape from which features they learn (Hanna et al., 2014; Schwartzstein,
2014; Gagnon-Bartsch et al., 2021; Bordalo et al., 2023). Instead, I show how the nature of
past climate exposure can cause farmers to react differently even when they are attending
to the exact same set of new signals. My focus on the differential impacts of salient shocks
and subtle shifts relates to a growing literature on inference from seemingly uninformative
attributes.16 The core features of my conceptual framework—many hypotheses, limited
information, and heterogeneous experiences—apply to many economic settings beyond the
agricultural decision-making process I examine. For example, stock brokers learning about
the fundamentals of a firm by observing the stock price face a very similar problem. By
focusing on the salient shocks and subtle shifts characteristic of climate change, however, I
speak directly to how individuals learn about the warming world, which has implications for
mitigation and adaptation policies more broadly.

Finally, I build on a long literature on the adoption of new techniques and products in
developing countries.17 This important body of work has documented many significant deter-
minants of the decision to invest in new technology—particularly in agricultural settings—
such as social learning (Foster and Rosenzweig, 1995; Conley and Udry, 2010; Beaman et
al., 2021), comparative advantage (Suri, 2011), factor market failures (Jones et al., 2022),
limited attention (Hanna et al., 2014), and present bias (Duflo et al., 2011). I test whether
beliefs about the local environment play a role in shaping farmers’ choices above and beyond
these other factors. The results of my experiments and structural estimation show these
beliefs can explain a large share of variation in technology adoption.18

15 In concurrent work, Kapons and Kelly (2023) examine the role of prior beliefs in the field settings in
biasing inference.
16 For example, see Busse et al. (2015), BenYishay and Mobarak (2019), Hartzmark et al. (2021), Bordalo
et al. (2022a), Conlon et al. (2022), and Alatas et al. (2023).
17 See, among others, Rosenzweig and Schultz (1989), Miguel and Kremer (2004), Munshi (2004), Bandiera
and Rasul (2006), Duflo et al. (2008),Ashraf et al. (2009), Foster and Rosenzweig (2010), Cole et al. (2013),
Bryan et al. (2014), Dupas (2014), Hanna et al. (2016), Atkin and et al. (2017), Bold et al. (2017), Glennerster
and Suri (2018), Michler et al. (2019), Higgins (2020), Oliva et al. (2020), Berkouwer and Dean (2022), Carney
et al. (2022), Chandrasekhar et al. (2022), Suri and Udry (2022), Dar et al. (2022), Aker and Jack (2023),
Chen et al. (2023), and Duflo et al. (2023).
18 A growing set of papers has explored the value of information in environmental contexts, including Fishback
et al. (2011), Rosenzweig and Udry (2013), Rosenzweig and Udry (2014), Weinberger et al. (2018), Barwick
et al. (2019), Rosenzweig and Udry (2019), Burlig et al. (2022), Fabregas et al. (2019), Molina and Rudik
(2022), Leeffers (2023), Fairweather et al. (2023), Kruttli et al. (2023), Rudder and Viviano (2023), and
Shrader et al. (2023).
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2 How Accurate Are Environmental Beliefs?

This section reviews the different decision-relevant climate characteristics I examine in
this paper, presents the data on the environment and farmers’ perceptions that I use to an-
swer these questions, and compares expectations to the truth to test for evidence of learning
frictions.

2.1 Environmental Context

I study the dimensions of soil salinity, flooding, and monsoon rainfall due to their first-
order importance in the economic lives of the Bangladeshi poor, as well as hundreds of
millions of households across the globe. My primary focus is the amount of salt in the soil,
a growing problem in both senses of the phrase. First, the salinity content of the soil can
substantially impact plant health, particularly for rice—the most common and important
crop in Bangladesh.19 Farmers widely recognize this critical component of the agricultural
production function, with 98.24% of respondents in my sample reporting that a lot of salt in
the soil harms crops. Second, climate scientists forecast significant increases in soil salinity
under global warming through a combination of environmental forces including rising sea
levels, increased evaporation, droughts, and floods (Mukhopadhyay et al., 2021).20 Projec-
tions in Bangladesh suggest soil salinity alone could reduce output by 15 percent in some
areas by 2050 (Clarke et al., 2015; Dasgupta et al., 2015, 2018).

Farmers can adapt to this threat by altering their fertilizer, irrigation method, seed va-
riety, or crop choice, or by shifting away from agriculture altogether. Salinity-tolerant seeds
in particular offer a promising avenue for adaptation and are widely encouraged by the gov-
ernment in saline-prone areas. To understand the trade-offs associated with this seed choice,
I consider two complementary pieces of evidence: farmers’ own perceptions of the returns to
these seeds, and objective agronomic assessments of their performance. I first elicit farmers’
beliefs about the returns to switching their seed to a salinity-tolerant one (or vice versa if
they are already planting a salt-resistant seed), and scale this by their expectation about
their total harvest.21 Appendix Figure A.1 plots the relationship between the perceived
19 Extending far beyond rice production in Bangladesh, soil salinity poses one of the greatest threats to food
security worldwide. Across most crops, soil featuring a share of soluble salts in the root zone exceeding
a plant’s tolerance can significantly inhibit growth. Salt-affected soils occur globally—with an estimated
impacted area of over a billion hectares (Hopmans et al., 2021). From Sudan to Peru, Vietnam to Pakistan,
salinity’s negative impacts especially jeopardize the livelihoods of agricultural households in low- and middle-
income countries (Singh, 2022).
20 According to the Soil Resources Development Institute, the amount of salinity-affected land already in-
creased more than 25 percent between 1973 and 2009 to reach 1.05 million hectares.
21 I use a visual belief elicitation to elicit these expectations in a quantitative manner (Delavande et al.,
2011). See Appendix Section C.2 for details.
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marginal return to salinity-tolerant seeds against farmers’ beliefs about soil salinity on their
plots (described further below). The results show a strong positive relationship that emerges
above the government recommended threshold for adopting these resistant varieties, consis-
tent with farmers understanding the value of this technology. To supplement these subjective
assessments, I next build a new database of rice varieties by collating information on its resis-
tance and tolerance to various environmental threats, typical plant height, yield, and year of
release from various official sources.22 Appendix Table D.1 presents simple bi-variate regres-
sions illustrating how other seed dimensions vary with salinity-tolerance. Consistent with
common understanding, the data show salinity-tolerant seeds perform worse than other va-
rieties in ideal, non-salty conditions. The adoption decision therefore requires matching the
technology to the appropriate conditions: in soil with high salinity, farmers achieve higher
yields with salinity-tolerant rice but would be better off with a different seed choice amid
low salt levels.

Identifying salinity levels on their own plots presents a substantial challenge for this
population who lack access to accurate measurement technology. Table A.2 presents the
indicators farmers report looking for to assess salt levels in their own soil, based off of
responses to an open-ended question in the survey. Almost no farmer has ever used an
electrical conductivity sensor or relied on a government agricultural officer who might have
access to more accurate salinity information. Farmers most heavily rely on literally seeing
the salt on the surface of the soil—which often represents an extreme form of salt inundation
and cannot be seen once plots have been flooded—or on salient visual characteristics of the
plant—such as ultimate height or characteristics of the leaves. Using plant characteristics
can present a challenging inference problem when a host of other factors can also impact
how plants look. To examine the extent of this challenge, I measure farmers ability to
diagnose high levels of salt in the soil by showing a random selection of five images of rice
plants damaged by salinity, disease, or pests, and asking them what may have caused the
issues. When shown photos of rice grown in too much salt, 59.93 percent of farmers fail to
report salinity as a potential explanation for any of the images, and 32.34 percent misidentify
salinity as the cause of photos of plants suffering from pests or disease.

Consistent with the difficulty of directly measuring soil salinity, many farmers hold in-
correct beliefs about the underlying environmental process behind soil salinity and effective
22 First, I use records from the website of the Digital Herbarium of Crop Plants from the Department
of Crop Botany at Bangabandhu Sheikh Mujibur Rahman Agricultural University, which itself aggregates
information from the seed developers. I supplement this data with additional information on the growth
duration of each seed from the Food and Agriculture Organization on Bangladesh. For the remaining seeds
without information from either of these sources, I execute online searches for each variety, conduct phone
surveys with four seed dealers across the Khulna division, and use information directly elicited from farmers
in my survey. For further details, see Appendix Section D.1.
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adaptation. Although 83.63 percent correctly reported that soil salinity changes over the
course of the calendar year, just 31.20 percent correctly name the months when it is high-
est.23 Along the same vein, spraying sugar water across plots has emerged as a popular
adaptation method, with 24.62 percent of farmers reporting that spraying sugar water helps
to combat salinity and 10.93 percent having taken that measure in the past. Yet from an
agronomic perspective, this method does nothing to improve the soil while costing farmers
both time and money from paying for the sugar.

In addition to soil salinity, I also examine floods and monsoon intensity. As the world’s
most common natural disaster, flooding can have catastrophic impacts on both agricultural
production—by damaging crops and fields—and general well-being, destroying homes or
entire villages. Climate scientists forecast that under even conservative projections of global
warming, much of the world will experience both higher frequency and severity of flooding,
particularly in developing countries where floods already cause the most harm (Kahn, 2005;
Brunner et al., 2021; IPCC, 2022). In Bangladesh, flooding can arise from excess rains,
the breaching of riverbanks, tidal surges, and cyclones. Farmers can adapt to flood risk by
adjusting their agricultural input choices (i.e. by changing what crop they harvest or planting
flood-tolerant seed varieties), changing their occupations, or migrating. The amount of
rainfall during the monsoon season impacts a host of important decisions about agricultural
production. Global warming has amplified the variability of the South Asian monsoon and
increased the likelihood of extreme rainfall events (Mohan and Rajeevan, 2017).

2.2 Measuring True Environmental Conditions

The scarcity of existing information on the local environment presents a significant chal-
lenge to farmers, government officials, and researchers. I overcome this obstacle by collecting
and constructing new data on climate conditions.24

Because very little soil salinity data exists in Bangladesh, I primarily rely on salinity
measurements I collected directly from farmers’ plots. I equipped enumerators with handheld
electrical conductivity (EC) meters which I used to measure salinity twice during the 2022-
23 Relatedly, 34.40 percent correctly identified a month when salinity is typically lowest, and only 22.07
correctly answered both questions. See Appendix Section C.2 for further details on the construction of these
variables.
24 In the case of flooding and monsoon intensity, I calculate exposure for each of Bangladesh’s 5,158 unions,
the fourth administrative level with an average size of 22 square kilometers. This helps to minimize mea-
surement error inherent in much of the environmental data that might arise by instead linking to a finer
geographic level—such as a given farmers’ own plot—while retaining the high spatial resolution necessary to
capture meaningful variation across space. In the survey and field experiment, I sample one village within
each union, and thus use the two terms interchangeably when discussing those results.
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2023 season on a randomly selected plot for each farmer in my main sample.25 I take the
first reading around the time of the baseline survey, prior to the planting of Boro season rice,
and the second reading during the spring, prior to harvest. I convert these measurements
taken at specific points in time during the calendar year into an average seasonal exposure
to salinity based on a simple linear model I estimate from historical government soil samples
collected monthly from nearby soil sites. The 2022-23 soil salinity season ultimately exhibited
quite unusual patterns relative to historical norms, as shown in Appendix Figure A.8. The
fall salinity readings indicate salt levels fairly typical of this area, with 82.58% of farmers’
plots in my sample expected to experience salinity above the government-recommended
threshold for adopting salinity-tolerant seeds. The salinity measured in February and March
2023 was significantly lower than previous springs, and after incorporating these additional
measurements into the model, the resulting overall salinity was abnormally low for the season,
with just 4.61% of farmers’ plots ultimately above that same threshold. I verified these trends
in the soil sample data I obtained from the government and confirmed the overall accuracy
of the handheld sensors I used through laboratory tests.26

To overcome biased underreporting of flooding in existing datasets, I combine methods
from machine learning and geophysics in the analysis of remote sensing data to detect flood
exposure every day for the past two decades.27 The oldest, most frequently orbiting satel-
lites carry optical sensors that take daily photos of the earth as they pass over, notably
used by economists to measure economic growth based on changes in night-time luminosity
(Henderson et al., 2012). In the context of flooding, these photographs feature an impor-
tant drawback: they cannot see through clouds. Given the non-random correlation between
precipitation and flooding, this missing data presents a serious problem when trying to accu-
rately measure surface water across time and space.28 More recently developed radar-based
sensors take a different approach by emitting pulses of microwave radiation at the earth.
While these instruments maintain high accuracy regardless of atmospheric conditions, they
are only available for recent years at less frequent intervals. Relying solely on these data
would miss many floods that happen to occur in between satellite passes. I use methods
from machine learning to get the best of both worlds: the accuracy of radar-based sensors
with the temporal coverage of optical ones. Using a combination of online news articles, river
25 I randomly selected plots, weighting by the area of the plot. The median number of plots is 2. When
eliciting size, I asked about the five largest plots (which only binds for a very small minority of farmers): the
median plot size is 24 decimals, where one decimal equals 1/100th of an acre.
26 For details on these tests and further details on this data collection, see Appendix Section B.2.
27 Click here for an online guide to my flood detection methodology.
28 In fact, the Global Flood Database (Tellman et al., 2021)—one of the most systematic attempts to create
a panel dataset of flooding using satellite data—only successfully maps 913 of 3,054 flood events globally
from the DFO dataset using this optical data.
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height measurements, and government reports, I show my remote sensing measure passes a
variety of validation checks. For further details on the limitations of existing flood datasets,
the methodology I use to create this new measure of flooding, and the validation of this
method, see Patel (2023).

I measure local rainfall using the Global Precipitation Measurement v6 (Huffman, 2019),
which combines remote sensing data with precipitation gauge analyses in a model to estimate
high-frequency, high-resolution rainfall.29 I first calculate average precipitation within each
union every 30 minutes for the past 20 years. My primary rainfall measure then aggregates
these data to the annual level to capture the number of rainy days during the monsoon
season, which I define as May 15th through October 15th to align the Bengali calendar.30

2.3 Measuring Farmers’ Beliefs about Environmental Conditions

To capture farmers’ perceptions of the local climate, I conducted surveys with 2,279
farmers who serve as the primary decision-makers on their plots across 250 villages span-
ning the Khulna division of Bangladesh.31 The widespread geographic coverage of sampled
villages throughout this area—which stretches more than 8,600 miles—allows me to capture
significant spatial heterogeneity in climate conditions. I first interviewed households at the
beginning of the Boro rice growing season and conducted an endline survey after harvest.
My primary measures consist of farmers’ past, present, and future perceptions of flooding,
rainfall, and soil salinity. To elicit quantitative beliefs in this low numeracy population, I use
29 Like many developing countries, the quality of local rainfall data in Bangladesh suffers from the sparsity
of weather stations. For example, Bangladesh Meteorological Department (BMD) provided data from just
35 gauge stations across the entire country to estimate the Huffman (2019) algorithm. Consequently, the
estimates from the gridded precipitation data used in this paper more heavily rely on remote sensing data and
modeling. Recent research comparing the validity of the gridded product to on-the-ground rainfall measures
typically find a strong correlation, with particularly high accuracy for detecting the existence of rainfall as
opposed to the quantity (Islam, 2018; Khairul et al., 2018; Montes et al., 2021). These findings reinforce my
use of this data to measure days of rainfall during the monsoon instead of quantity directly, yet the estimates
likely still feature significant measurement error. To partially address this potential bias, I calculate the sum
of squared distances between the centroid of each union and the three closest BMD stations from that list
of 35 (Hoque et al., 2011) and control for this weather-station remoteness measure in all relevant analyses.
30 To mirror the belief elicitation question which asks respondents to classify rainy days as those for which it
rains for at least one hour with normal sized drops, I define a rainy day as one with at least .5 mm of rain,
which follows the threshold for slight rain as defined by the U.S. Geological Survey.
31 For further details on sampling, see Appendix Section C.1. Appendix Table A.1 presents basic demographic
information about this sample. Appendix Figure C.2 presents a timeline of data collection. The sample
restrictions pose a potential threat to the interpretation of results. By limiting respondents to Boro season
rice farmers still living in each village, I could be selecting for those farmers who—due to their beliefs—have
not adapted by switching to a different economic activity or permanently migrating away. Two factors help
to address this concern. First, those who have yet to adapt along these dimensions constitute the policy-
relevant population. Second, an extremely low share of farmers in the sample report any likelihood of these
extensive margin adaptation measures. For instance, 96.05 percent of respondents say no when asked, “If the
amount of salt in your soil became very high, would you consider stopping planting rice in the Boro season?”
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a visual elicitation method in which enumerators instruct farmers to place buttons on images
in accordance with their perceived likelihood of each pictures scenario, a method which the
vast majority of farmers understood well.32 I use this approach to measure perceptions of soil
salinity on farmers’ own plots, the likelihood of experiencing flooding of different durations,
and the intensity of rainfall during the monsoon season.33

Eliciting comparable soil salinity beliefs to the agronomic measures presents a challenge
because no one naturally thinks in deciSiemens per meter (dS/m), the units of the electrical
conductivity sensors. I overcome this using an image of rice plants taken from the experiment
in Grattan et al. (2002) in which researchers grew a standard rice seed in different growing
conditions, randomly changing the salt content of the soil across treatment arm. The image
shows seven plants from different arms at the end of the growing season, where the healthiest,
tallest plants correspond to the lowest salt levels, and the least healthy plants grew in the
highest soil salinity. I explain this image in detail to farmers, ensure their understanding
that the photos capture different salinity levels, and then ask them to predict through the
allocation of 10 buttons across the images which of the pictures they expect to look most
like a plant grown by these researchers who used a not saline-tolerant seed on their plot,
replicating all aspects of the farmer’s soil such as the water, fertilizers, and weather over the
course of the season.34 Because I know the salinity conditions used in the original experiment
to grow the rice plants in each picture, I can back out from farmers’ answers their expected
salinity in dS/m.

I designed this question to address several potential concerns in the elicitation of soil
salinity beliefs. First, salinity evolves over the course of the season due to many factors,
including the types of fertilizer used by farmers, the amount of rain (that can potentially
wash away salts from the surface), and the irrigation water. As a result, I made sure
farmers understood that these factors should be taken into consideration when making their
prediction. Of course, one potential risk with this approach is that other factors can also
32 See Appendix Section C for details on this survey including links to the full questionnaires for the baseline
and endline surveys, both in English and Bangla. Farmers answered a series of comprehension questions
to gauge understanding of the belief elicitation method: across both the baseline and the endline, 63.67
percent of respondents answered these questions perfectly, and just 3.82 percent of respondents answered all
three comprehension questions incorrectly. Just 11.63 percent reported that they found the example belief
elicitation to be either “a lot” or “very” confusing. I pre-specified conducting cuts of the data by how well
respondents answer these practice questions, their education, and their socio-economic status. This belief
elicitation approach has been widely used to measure beliefs in similar settings (Delavande et al., 2011; Gine
et al., 2015; Delavande, 2023).
33 I elicited beliefs about soil salt content during the baseline survey for the 2022-23 season and during the
endline survey for the 2023-24 season. For flooding and rainfall, I randomized at the individual level whether
respondents answered those belief questions in the baseline or the endline surveys.
34 Appendix Section C.2 provides further details on the belief elicitation for soil salinity, rainfall, and for
flooding and on the construction of these key variables.
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impact the height of the rice plant separately from salinity, e.g., a certain pest or disease.
Since I do not want to capture predictions about these other risks, I explicitly say to farmers,
“We are asking this question because we are trying to understand how much salt you think
is in your soil.” Piloting indicated that farmers clearly understood this question to be
specifically about salinity, and answered accordingly. Second, I highlight that farmers should
assume they are growing a seed that is not salinity tolerant to match the experiment of
Grattan et al. (2002), a key step given that nearly half of farmers at baseline expect to
plant a salinity-tolerant seed. Interactions across inputs pose a threat to the elicitation if,
for instance, farmers irrigate their land with different water sources depending on their seed
choice because I am asking them to hold those other factors constant. Reassuringly, however,
I ask farmers directly in the endline, and the vast majority report that they do not change
any of their other agricultural input decisions based on their seed choice. Third, one might
worry that farmers simply predict what they expect their own plants to look like or what
they recall from last year instead of thinking through the salinity prediction in particular.
To address this, I explicitly ask farmers prior to the main salinity question about the picture
that best describes their last harvest and their expectation about their harvest this coming
season. Appendix Figure A.5 presents the full distribution of the mean salinity belief that
farmers report in dS/m units. As a benchmark, the government recommends switching to
a salinity-tolerant seed for values above 4.0 ds/m. In my sample, 43.86 percent believe the
salt content on their soil will exceed this threshold over the course of the 2022-23 season.

Although flooding and monsoon intensity do not feature the same unit issues as soil
salinity, other challenges emerge in eliciting beliefs about these environmental threats. In
particular, these two dimensions may be more vulnerable to level effects from the belief
measurement than soil salinity. For floods, I ask farmers to place buttons in accordance
with how likely it is they will experience a flood lasting a given length of time (where zero
days is one of the options).35 The fact that I restrict farmers to 10 buttons through which
they can express their beliefs can be binding for the low-probability events of rare floods.
In other words, I effectively prevent respondents from expressing expectations of likelihoods
lower than 10 percentage points. This may explain in part the high rates at which farmers
expect floods to occur: on average, respondents predict experiencing 2.33 days of inundation
in the next year, and 3.72 days in the next five years.36 As a complementary belief elicitation
35 I define a “flood” to respondents as unexpected and unwanted water that enters their land or house and
covers the ground, consistent with the type of surface water I am able to detect using the satellite instruments.
Additionally, I instruct them to consider a flood as having happened to them if the inundation covers at
least half of one of their plots or the water touches their home.
36 These means mask important information about both the distribution of beliefs across farmers and farmers’
perceptions of the distribution of flood risk. Appendix Figure A.2 plots the cumulative distribution function
of flooding beliefs over a one-year and five-year horizon, and shows that a significant share of farmers perceive
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method that is less susceptible to this probability weighting concern, I ask farmers, “How
many years do you think it would take for a [Horizon] long flood to happen in this village?”
where [Horizon] matches the same inundation durations as the other question. Appendix
Figure A.3 presents the results from the alternative question, showing that on average,
farmers expect flash floods every 6.93 years and even month-long inundation events every
24.63 years. Additionally, my definition of flooding based on the satellite data requires
taking a stance on the percentage point increase in surface water to classify a binary flood
definition. I take a data-driven approach using survey data with farmers to calibrate a
threshold of 20 percentage points. This mechanically implies my measure underestimates
true flooding because there will be some small floods below this threshold that I omit. In the
case of monsoon intensity, I ask farmers to recount how many days it rained on average for
a given two week period during the monsoon season, where I explicitly define the monsoon
season as a fixed time period over the calendar year. Because I give conservative bounds
for this period to ensure that I capture the relevant monsoon days in all years, even small
misperceptions in this period (e.g., excluding one week on either end) can have meaningful
impacts on the hazard rate of rain. Finally, in both flooding and rainfall, bin effects could
play a particularly important role. Due to these reasons, I primarily focus on comparative
statics as opposed to level results with respect to these beliefs.

2.4 Assessing Belief Accuracy and Testing for Learning Frictions

Linking the beliefs and environmental data together, I can compare how farmers’ expec-
tations compare to the ground truth and examine the extent to which these patterns suggest
frictions in the learning process. On average, farmers exhibit remarkably accurate beliefs
about the salt content of their soil. Figure 1 plots a binned scatter plot in blue comparing
farmers’ beliefs to the truth. The dashed gray line denotes the 45-degree line. The dots
generally fall along the gray line. Consistent with this graphical evidence, Table 1 presents
bi-variate regressions of beliefs against true salinity levels as measured via the agronomic
sensors. At the 10 percent level, I fail to reject that the slope of this relationship equals 1
and the intercept equals 0, again consistent with accuracy on average. This holds both for
the pre-specified sample of those who passed the belief comprehension checks in column (1)
and including those who did not in column (2).

This average accuracy masks significant heterogeneity, however. As one way to see this,
consider the explanatory power of the regression model. With simply a linear term of the
truth and a constant, the agronomic truth can explain less than four percent of the total

no flood risk as measured by this elicitation.
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variance in beliefs. Even using a flexible function of the truth interacting the linear slope
with 20 ventiles, the explanatory power of the model still only ever reaches just over six
percent.

Some of this unexplained gap between soil salinity beliefs and the truth likely stems
from measurement error—but not all. I conduct several empirical tests illustrating that
the residual belief error captures a meaningful economic object. Appendix Table A.4 shows
results from specifications altering the scope of classical measurement error are inconsistent
with noise alone explaining the results.37 Table 2 and the corresponding plots in Figure 3
show that errors in farmers’ beliefs explains their actual planting behavior with respect to
salinity-tolerant seed choice above and beyond the true salinity content of their land. Farmers
who overestimate the salt content of their soil by a larger amount also plant salinity-tolerant
seeds on a larger share of their land (p−value < .01). This provides evidence that the gaps
between beliefs and the true soil conditions capture more than just noise. Next, I examine
the individual-level predictors of belief accuracy in Table 3. I focus on four dimensions that
we expect might capture skill or farmer’s ability to learn: the amount of land they farm,
their age, whether their neighbors’ view them as knowledgeable farmers, and whether their
peers follow their agricultural advice. Across all of these dimensions, I find that accuracy is
higher among farmers with more data (i.e., more land or experience) and viewed as better
farmers. These facts are inconsistent with measurement error explaining the gap between
beliefs and the truth and additionally suggest an important scope for learning frictions.
Second, I examine the spatial component of errors. Figure 4 HERE

These results raise an important puzzle: given the strong incentives farmers have to learn
the truth, why do mistaken environmental beliefs persist in equilibrium? To shed light on
that question, I next turn to a simple conceptual framework of farmer learning.

3 Learning About the Environment

This section presents a simple conceptual framework to illustrate how farmers learn
about the environmental inputs into the agricultural production function amid the signals
37 First, column (1) of Appendix Table A.4 shows that classical measurement error alone cannot explain
the gap between measured salinity beliefs and the truth by regressing farmers’ answer to a separate, binary
question about whether they think the plot’s soil is salty on continuous belief captured via the visual
elicitation method. The results show a strong, positive relationship (p-value < .01). Measurement error
would have to be correlated across these two very different questions in order to explain this relationship.
Second, restricting the sample to those who understood the belief elicitation method better (as measured
by their self-reported understanding) in column (2), the explanatory power of the model in fact decreases
by more than 50 percent, inconsistent with a story in which measurement error in beliefs drives the errors.
Third, error in the agronomic measure of salinity is unlikely to explain the results: regressing individuals’
beliefs on the village leave-out mean, I find essentially no change in the explanatory power of the model.
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characteristic of global warming.38 The key assumptions I make stem directly from the
quantitative findings from my surveys, the farmers’ responses to the open-ended survey
questions, and the narrative qualitative interviews I conducted on a separate sample. I
include quotations and references to these statistics in footnotes throughout this section.39

3.1 Set-Up

A farmer grows rice in two periods t ∈ {1, 2}. Output in period t is given by the
binary indicator yt ∈ {0, 1}, where yt = 0 denotes low harvest, and yt = 1 denotes high
harvest. Harvest is subject to a random productivity shock ξ that can be either negative
(ξ = −1), positive (ξ = 1), or neutral (ξ = 0). I assume productivity shocks are distributed
symmetrically with mean zero such that the positive and negative shocks occur with equal,
positive probability denoted by ρ > 0 and that neutral shocks occur with positive probability
such that ρ < .5. In the first period, farmers make no decisions about inputs and plant the
standard seed. In the second period, salinity tolerant seeds are introduced, and farmers
decide whether to plant salinity tolerant seed or plant the standard seed. This decision is
given by the binary indicator dt ∈ {0, 1}. Planting a standard seed is given by dt = 0,
where d1 = 0 by default because salinity tolerant seeds are not available in the first period.
In the second period, farmers may plant a salinity tolerant seed, denoted by d2 = 1. Seed
choice costs c(dt), where I normalize such that planting a non-salinity tolerant seed is free
c(dt = 0) = 0. I assume planting a salinity tolerant seed costs c(dt = 1) > 0, where c(dt = 1)

is positive yet small to capture the notion that salinity tolerant seeds perform relatively
better in high salt environments yet relatively worse than standard seeds amid low salinity.

Two independent and unchanging environmental conditions denoted by the set {S,B} can
impact harvest, where S is the soil salinity and B is blast, an important fungus threatening
rice.40 I use lower case letters to denote the true, binary environmental states in these
respective domains, given by s ∈ {0, 1}, where s = 0 denotes low salt levels and s = 1

denotes high salt levels, and by b ∈ {0, 1}, where b = 0 denotes no blast and b = 1 denotes
the presence of blast.41

38 For a formal treatment of all results in this section, please see Appendix Section E.
39 See Appendix Section F.1 for details on the narrative interviewing approach I used and coding procedure
for these qualitative data. For additional quotations supporting these assumptions, see Appendix Section
F.2.
40 The same intuition applies in the case of a large number of inputs. I focus on the case of unchanging
environmental states: introducing the potential for unobservable shifts in the climate makes the farmers’
problem even more challenging.
41 I focus on learning about soil salinity from agricultural production in this set-up, yet the basic building
blocks of this conceptual framework also apply to learning about rainfall and flooding—the other two key
climate beliefs I examine in this paper. Appendix Section E.2 discusses extensions to these settings.
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I assume the agricultural production function follows a particular, simple functional form
given by Equation 1. The maximization and minimization expressions ensure the binary
support of output yt ∈ {0, 1}. Planting salinity tolerant seeds dt = 1 mitigates the damage
from soil with high salt content (s = 1).

yt(s, b, dt) = max
(
min

(
1− (s− dt)

2 − b+ ξ, 1
)
, 0
)

(1)

I assume farmers cannot directly observe the environmental states.42 As a result, farmers
are uncertain about how their decision d2 impacts their output y2 entering the second period.
This uncertainty is captured by their prior over the states of soil salinity and blast. I use ·̂
and lower case letters to denote beliefs in the environmental domains S and B, such that ŝt
denotes a farmer’s belief entering period t about the probability that true salinity levels are
high ŝt = P (s = 1), and b̂t denotes a farmer’s belief in period t about the probability that
blast is present b̂t = P (b = 1). Other than potential misperceptions about the environmental
conditions, I assume farmers are correctly specified in their understanding of the production
function in Equation 1.

I assume that farmers use Bayes’ rule to learn about these unobserved environmental
conditions by updating using the harvest in period 1.43 Note that a key feature of the
production function is that farmers face an identification problem: low yield is consistent
with both high soil salinity and blast, and high yield is consistent with low salinity and
the absence of blast. In other words, I have assumed that poor harvest performance could
reflect multiple potential issues in the agricultural production function, and these underlying
threats manifest themselves in identical ways.44 Given initial non-degenerate priors about
the likelihood of high salinity ŝ1, Equation 2 gives the posterior at time t about the likelihood
42 As one farmer said during the endline survey, “We do not have the equipment to test the salinity of the land.
Understanding the amount of soil salinity depends on our assumptions.” Appendix Table A.2 illustrates this
difficulty by showing the rarity of farmers using salinity sensors or consulting with government officials to
learn about salt on their soil.
43 Appendix Table A.2 shows this is the most commonly used way farmers learn about soil salinity, for
instance. As one farmer explained, “We understand the amount of salt in the land by calculating the crop.
If the crop is good, it means that the salt content in the land is low.” Additionally, some farmers also use
physical characteristics of the plants or the land, though this is less common and less universally applicable.
For instance, one farmer pointed out that, “Salinity is easily recognized when the soil is dry and whitish in
color. But I can not understand the salinity level if there is water in the land.” Appendix Figure A.14 shows
a photograph I took of this type of visible surface salt. This type of signal only appears at extremely high
salt levels and is only visible—as this farmer points out—when the land is dry. This makes it impossible, for
instance, to assess salinity using this indicator during the growing season because farmers keep their plots
perpetually submerged with irrigation water, a particular issue given that salinity increases dramatically
over the course of the season, and so is in fact lowest prior to irrigation when surface salts might be possibly
viewed.
44 As one farmer said when discussing crops being destroyed, “I don’t know if it’s because of the salinity or
something else.”
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of high salinity levels, with the symmetric expression for blast beliefs b̂2.

ŝ2 = P (s = 1|ŝ1, y1) (2)

Risk-neutral farmers choose seeds to maximize output in period 2 given their beliefs, as
shown in Equation 3. To isolate the key mechanism of this framework, I have assumed that
farmers stop growing after the second period, implying that farmers are myopic, maximizing
only the current period’s output without regard towards the potential learning benefits of
experimentation.

U = max
d2

E
[
y2(ŝ2, b̂2, d2)− c(d2)

]
(3)

Finally, I define the default hypothesis as the environmental threat that a farmer perceives
to be the most likely to occur, as shown in Definition 1.45

Definition 1 An environmental factor E ∈ {S,B} is the default hypothesis in period t

when the corresponding belief êt = max(ŝt, b̂t).

3.2 Implications for Learning

In this conceptual framework, beliefs exhibit path dependence: environmental threats
that are perceived to be more likely remain relatively more likely after new data is observed.
Remark 1 formalizes this statement, and Appendix Section E provides a formal treatment
of this result.

Remark 1 If two farmers i and j have different default hypotheses (max(ŝi1, b̂
i
1) ̸=

max(ŝj1, b̂
j
1)), then even if their priors are arbitrarily close (|ŝi1 − ŝj1| < ε) and (|b̂i1 − b̂j1| < ε),

after observing identical data (yi1 = yj1), their posterior beliefs will exhibit the same difference
in default hypotheses (max(ŝi2, b̂

i
2) ̸= max(ŝj2, b̂

j
2)).

Because low (high) yield is consistent with both high (low) salinity and (no) blast, the same
signal can be interpreted in different ways while still being consistent with the data and
correctly specified model.46 Farmers endogenously process the same raw data differently in
accordance with their default hypothesis: low yield is seen as evidence that the environmental
threat they initially deemed more likely is indeed true, while high yield is interpreted just

45 I assume no ties (ŝt ̸= b̂t): that is, farmers never hold exactly the same belief about the likelihood of both
environmental threats.
46 This finding echoes a related result in Chen et al. (2023) in which by virtue of overestimating one tech-
nology, farmers endogenously adjust their beliefs about another to justify their observed outcome, leading
to underestimation of the second.
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the opposite. Note that this divergence does not come from a misspecified mental model or a
behavioral friction. Instead, this reflects the Bayesian response and the fact that a farmer’s
priors affect how they interpret the ambiguous signal of harvest.47 In fact, Appendix Section
E shows that this effect scales with the degree of “defaultness”: that is, when the gap in
priors (|ŝj1 − b̂j1|) is larger, this skew in interpretation of new data is exacerbated.

Figure 5 provides a graphical illustration of this path dependence in beliefs separately
for the cases of high and low yields. Figures 5b and 5a plot the changes in beliefs for a
given prior for high and low yield, respectively, and Figures 5c and 5d scale these changes to
account for the mechanical limitations to magnitudes given the support of possible beliefs.
All graphs exhibit a striking divergence around the 45◦-line—the boundary along which
default hypotheses switch. One way of interpreting Remark 1 is that two farmers on either
side of that line will remain on separate sides, even after observing the exact same data.

3.3 Extensions

I now discuss various extensions of this conceptual framework that relax some of the
main assumptions.

Uncertainty About the Agricultural Production Function Thus far, I have assumed
that farmers perfectly observe how features of the environment impact yield. In practice,
farmers learn about both the levels and the marginal costs of climate conditions. One imme-
diate consequence of relaxing perfect information about the agricultural production function
is the exacerbation of the identification problem. Farmers who observe a bad harvest now
cannot distinguish between (a) low salinity and high salt damages, (b) high salinity and low
salt damages, (c) low blast and high blast damage, (d) high salinity and low salt damages.48

Recent work on convergence in misspecified learning by Heidhues et al. (2021) and Chen
et al. (2023) illustrates that even after abstracting away from this identification issue, an
incorrect mental model of the agricultural production function can persist in equilibrium as
long as farmers can find beliefs that justify the observed output.

Experimentation A key aspect of this set-up has been the lack of experimentation. In
practice, farmers in fact trade off between benefits today and learning for tomorrow (Fos-
ter and Rosenzweig, 1995). Indeed, the empirical results that farmers with more land and
47 More general results on the failure of asymptotic agreement in under-identified settings can be found in
Acemoglu et al. (2016).
48 This occurs even abstracting away from bottom-coding issues given the impossibility of negative harvest.
Non-linearity of this type in the production function (as featured in Equation 1) further exacerbates this
issue as because farmers then cannot distinguish between high salinity and high or low salt damages.
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more experience hold more accurate beliefs suggests an important role for experimentation
to overcome this identification problem. Challenges can nevertheless occur that reduce the
efficacy of experimentation in leading to correct beliefs. First, I have assumed that farm-
ers are correctly specified about every other aspect of the production function, including
notably the ways in which environmental conditions impact yield and the distribution of
idiosyncratic production shocks. In reality, these primitives are also unknown to farmers,
and uncertainty over those dimensions will exacerbate the identification challenges. Second,
when experimentation is costly (due to a subsistence constraint or fixed cost in technology
investment, for instance), then farmers may choose not to experiment despite knowing that
their beliefs may be wrong because given their priors, the expected benefit of learning may
be small.

Social Learning The conceptual framework also omits another important feature of this
setting: social learning. In many ways, one’s neighbors act as a form of experimentation
as discussed above, particularly given the high spatial covariance of environmental threats.
One factor that may inhibit the role of social learning to correct beliefs is the nature of errors
in this setting. I have thus far been agnostic as to the origins of priors, but as I show below,
past environmental experiences play a key role in shaping farmers’ initial beliefs. Because
environmental experiences also exhibit high spatial covariance, the neighbors one might turn
to for advice likely hold a similar set of biased beliefs.

Higher Dimensional Signals I have focused on the simple case in which farmers only
observe yield which can either be high or low. In practice, farmers can observe a much
richer set of data, such as the color of leaves or a continuous measure of yield. This will
help farmers learn when they correctly know that certain physical characteristic is linked
with a particular threat, and therefore the cumulative distribution functions of the two
environmental beliefs are in fact disjoint, thereby alleviating the identification problem. I
find evidence that farmers often do not have knowledge of, for example, the particular leaf
patterns emblematic of blast. Without this type of external information, higher dimensional
signals do not alleviate the learning challenges in this conceptual framework.

Learning in the Long-Run This set-up has focused on the two-period case. What
happens to beliefs in the long run? Under the assumption that farmers have full information
about the distribution of idiosyncratic production shocks, farmers in this set-up will be able
to distinguish between a world in which both environmental threats are present and only
one, yet in the one threat case, they are not guaranteed to ever be able to learn which threat

23



is prevalent. In the case where farmers are also uncertain about the distribution of shocks,
then even the case of both threats will be fully consistent with the data when in reality only
one threat is relevant, or vice versa.

3.4 The Formation of Priors

This conceptual framework has illustrated the power of priors in this setting. How do
farmers form their initial beliefs about the environment? Many potential sources of infor-
mation could influence which factors farmers deem important ex ante, ranging from wisdom
passed along from their peers to guidance provided by agricultural extension workers.

I study how the nature of past environmental shocks shapes the priors held by farmers
and thereby the ways in which they interpret signals about their yield. Under the upheaval
of changes to the climate under global warming, understanding how farmers learn from
shifts in the environment holds particular policy relevance. I therefore focus on two types
of signals characteristic of climate change: salient shocks and subtle shifts. Almost all
environmental threats impacted by global warming feature these two classes of changes. For
dimensions like rainfall, temperature, and pollution, I consider a daily or seasonal extreme
as a salient shock, while secular trends in the distribution—while nevertheless important
and observable—I classify as subtle shifts. For natural disaster risk, marginal increases in
determinants of the hazard (e.g., riverbank erosion or sea-level rise in the case of flooding)
constitute subtle shifts, while an occurrence of the natural disaster (e.g., a flood itself) counts
as a salient shock. Appendix Table A.5 provides examples of salient shocks and subtle shifts
across a host of different environmental dimensions.

How might salient shocks and subtle shifts vary? I discuss three channels through which
experiencing one event rather than the other can lead to persistent learning differences. The
relevant mechanism will depend on the context and assumptions made about the types of
data to which farmers attend, as I discuss further below. In all cases, however, the main
empirical predictions remain the same.

First, remaining in the purely Bayesian world with no restrictions on farmers’ attention,
a salient shock may result in different equilibrium beliefs than a subtle one if the statistical
content of the signal varies. For example, imagine that experiencing a flood (a salient shock)
indicates a significantly higher future flood risk than an incremental increase in river height
(a subtle shift) because of what the occurrence of a flood indicates about the data generating
process. In this case, a Bayesian farmer who happens to experience a flood as a salient shock
will rationally enter the next period with a higher prior belief about future flood risk than one
who experienced a subtle shift. This gap in initial beliefs can be amplified by precisely the
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same mechanism as discussed above in which farmers endogenously alter how they interpret
new data in line with their priors. The model predicts that whichever signal suggests higher
posterior environmental risk will cause farmers to overestimate that risk by more.49 Whether
or not the true statistical content of the signal varies across these two events is a difficult
question to answer and of course highly context specific. It is not obvious in this example,
for instance, that experiencing a flood (a salient shock) should indeed increase beliefs about
future flood risk more than an incremental increase in river height (a subtle shift).

I now focus on the case where both the salient shock and subtle shifts carry the same
statistical content but nevertheless lead to learning gaps. To capture this, I introduce limited
attention in two ways. First, I consider a case where due to the subtlety of incremental
change, that class of shifts can be simply difficult for farmers to notice. In that world,
because farmers fail to attend to this information, they do not update their priors about
environmental risk in the same way as they do after experiencing a salient shock, even though
both events inherently have the same information about the underlying data generating
process. This causes farmers to enter the next period with different initial beliefs, a gap
which can be exacerbated by the same mechanisms in this underidentified setting as before.
This assumption about failing to notice subtle shifts may be more plausible in some settings
than others. On the one hand, incremental increases in the salinity of irrigation water may
be too small to be detected by tasting the water, which means that even if farmers use all
the tools available to them in an attempt to notice such a change, they may fail to detect
such subtle shifts. On the other, farmers might always notice if its raining, and so even if
the number of days of rain does change from year to year, they will always have attended to
this data.

Even in cases when the subtle shifts and salient shocks feature the same statistical infor-
mation and farmers attend to both, differences in the nature of the stimulus can still generate
learning gaps amid a different form of limited attention. Specifically, instead of only attend-
ing to some environmental data, I instead assume that limited attention restricts the set of
potential hypotheses that farmers consider when interpreting a new signal. As discussed in
(Hanna et al., 2014), farmers face a high-dimensional space of factors potentially impacting
agricultural production, and keeping track of all of these inputs can be challenging in of
itself, let alone conducting Bayesian inference across so many dimensions. Salient shocks
attract attention automatically and involuntarily, or “bottom up” (Bordalo et al., 2022a).50

49 Consistent with the empirical evidence I find in the setting of soil salinity, I focus on the case where salient
shocks lead to overestimation, and thus I assume it is the salient shock that suggests higher environmental
risk.
50 Psychologists have noted the evolutionary origins of this cognitive mechanism, which features clear survival
benefits. The psychology literature on climate change has particularly noted the challenges this instinct poses
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In doing so, they change which the set of hypotheses that come to mind by making some
environmental culprits more salient.51 This system 1 thinking occurs near-instantaneously:
upon seeing new data, farmers apply Bayes’ rule to update their beliefs only among the
factors that come to mind. By neglecting those potential explanations that are less available
(Tversky and Kahneman, 1973), farmers effectively put more weight on those factors for
which they experienced a salient shock.52

The key empirical prediction distinguishing these two limited attention frameworks and
the Bayesian benchmark stems from how salient shocks differentially impact posterior beliefs
as compared to subtle shifts, conditional on their true statistical content being equivalent.
Without attention costs, this ancillary feature of the salient shock is irrelevant for farmers
beliefs and ultimate decisions. By contrast, amid limited attention that causes farmers
to either fail to notice the subtle shift entirely or make it less likely that environmental
explanation comes to mind, learning gaps can persist.

4 Learning from Salient Shocks and Subtle Shifts

To test the key predictions of this conceptual framework in the domain of soil salinity, I
study two quasi-random natural experiments to capture salient shocks and subtle shifts in
the environment.

4.1 Empirical Strategies

Salient Shocks: Saline Floods In my framework, a salient shock alters the environment
in a manner that captures farmers’ attention. Under this definition, I can take a data-driven
approach to identifying the ideal treatment to answer this question. I ask all of the farmers
in my sample to recount any event that has affected the salinity of the soil on the plot
about which I measure beliefs and from which I take agronomic readings. At the time of the
baseline survey, 17.60% of framers reported ever experiencing at least one event. Flooding is

when applied to the mitigation of and adaptation to environmental harm (Gilbert, 2006; Johnson and Levin,
2009; Gifford, 2011).
51 Differently from other models of limited attention and belief formation, in my set-up, farmers always attend
to all data from which they might learn. Limited attention acts on how farmers interpret these signals and
which features are associated with a given hypotheses by limiting the number of hypotheses farmers entertain.
In the language of Tversky’s (1977) similarity framework, my model makes the similarity function linking
signals and hypotheses endogenous to attention. Previous work, by contrast, treats the link between data
and hypotheses as exogenously determined, and instead operationalizes limited attention through agents
attending to some signals more than others (Schwartzstein, 2014; Hanna et al., 2014; Gagnon-Bartsch et al.,
2021; Bordalo et al., 2022b).
52 This result echoes the empirical findings in Enke (2020).
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the modal answer, constituting 38.53% of 436 total events. Farmers report salinity increasing
in 91.67% of these cases, and specifically mention flooding with salty water 73.21% of the
time.

Based on this overwhelming dominance of saline floods among recollected salinity events,
I focus on identifying the causal impact of these climate occurrences to test for the role
of salient shocks in the model. I adopt a difference-in-differences specification to capture
quasi-random variation in the incidence of saline floods, as shown in Equation 4, where v(i)
denotes that the variable is defined at the village level. This main coefficient of interest
β1 captures the differential impact of experiencing a flood with more salty water, holding
constant underlying flood risk, local water saltiness, and any other broader impacts of ex-
periencing a flood. I cluster standard errors at the village level, the level of treatment. The
quasi-random determinants of flooding and water saltiness allow me to interpret β1 as the
causal impact of happening to actually experience this salient shock. Conditional on the
same underlying flood risk, otherwise identical places may or may not experience a flood due
to idiosyncratic variation in factors like rainfall and tidal surges. Similarly, the salt content
of water fluctuates randomly due to factors like cloud cover changing the evaporation rate.
Water salinity also evolves over the calendar year, and as such the precise timing of a flood
can dramatically shape the salt content of the floodwaters. Appendix Figures B.8 and B.11
visualize this variation in salinity in Bangladesh’s rivers and in the ocean off the coast.

Yi = α+β1Floodsv(i)×Water Saltinessv(i)+β2Floodv(i)+β3Water Saltinessv(i)+ψFlood Riskv(i)+εi
(4)

To measure past exposure to flooding, I use the same data as before in which I combine
methods from machine learning and geophysics to estimate local floods, described further in
Patel (2023). I use a supervised machine learning model trained on underlying geographic
factors to derive my measure of flood risk, as discussed further in Appendix Section B.1,
and control for fixed effects of quintiles of this variable. To capture the saltiness of water,
I combine two sources. First, I use remote sensing data from satellites that detects fluctua-
tions in ocean salinity from space. Second, I use data I obtain from the Bangladesh Water
Development Board from river stations scattered across the country at which the government
directly collects water salinity measurements. Together, these data allow me to measure the
saltiness of local water.53 For ease of interpretation, I convert water salinity into standard
deviation units.
53 See Appendix Section B.3 for details on these data.
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Subtle Shifts: Rising Sea Levels I cannot use farmers’ own assessments to measure
subtle shifts as almost by definition, they will not recall or easily identify these events.
Instead, I rely on the scientific literature on soil salinity and climate change, which specifically
points to rising sea levels and the associated impact on irrigation water as a driving force
behind increasing salinity (Mukhopadhyay et al., 2021). As global warming increases sea
levels along the Bangladeshi coast, the water farmers use to grow rice can become saltier,
either through underground contamination of groundwater (as illustrated in Appendix Figure
A.13), or through river systems themselves becoming saltier upstream.

To isolate the causal impact of subtle shifts, I estimate a triple-differences design. For the
first difference, I calculate deviations in ocean water salinity from the village-by-calendar-
month mean, thereby comparing villages with relatively higher or lower exposure to local
water saltiness compared to their historical average. Second, I calculate deviations in ocean
sea level elevation from the village-by-calendar-month mean, thereby comparing villages
exposed to higher vs. lower sea level rise relative to their historical average. Finally, I
compare villages closer vs. farther from the coast, under the intuition that rising sea levels
will infiltrate irrigation water more the closer the village lies to the ocean. This yields the
estimating specification shown in Equation 5. I cluster standard errors at the village level,
the level of treatment.

Yi = α + β1Closer × Saltier ×Higher + β2Closer × Saltier + β3Closer ×Higher+

β4Saltier ×Higher + β5Closer + β6Saltier + β7Higher + εi (5)

The coefficient of interest β1 captures the degree to which villages closer to the coast hap-
pens to be exposed to higher sea levels when the ocean is saltier have differential outcomes.
The quasi-random nature of ocean salinity (which can be influenced by factors like cloud
cover and evaporation) and sea level rise give a causal interpretation to this regression. I use
data from satellites to capture ocean salinity and sea level elevation; see Appendix Section
2.2 for details on these data and variable constructions. For ease of interpretation, I convert
all units into standard deviations.

4.2 Differential Impacts of Salient Shocks and Subtle Shifts

As a first step in the analysis of these natural experiments, I examine the impact of
experiencing a salient shock and subtle shift on the true soil salinity conditions as measured
by the agronomic sensors. Columns (1) and (2) of Table 4 present the results of this analysis,
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reporting the main interaction terms from each difference-in-differences specification (the
primary coefficients of interest).54 Coincidentally, it happens to be the case in this context
that experiencing a 1 s.d. saltier flood has equivalent impacts on true soil salinity as does
experiencing a 1 s.d. increase in ocean elevation interacted with a 1 s.d. saltier ocean among
villages 1 s.d. closer to the coast. The salient shock increases measured salinity on farmers’
plots by .153 dS/m while the subtle shift increases it by .113 dS/m, and these effects are not
statistically different from one another.

In contrast to the comparable impacts on true salinity, I find markedly asymmetric im-
pacts on farmers’ beliefs. Columns (3) and (4) of Table 4 present the two main interaction
terms from the difference-in-differences specifications and shows that only salient shocks in-
crease beliefs, while subtle shocks have no detectable effects. Furthermore, salient shocks
increase beliefs by more than the corresponding impact on true salinity, leading to overesti-
mation.

The model predicts that this asymmetry occurs through the differential interpretation of
signals in this underidentified environment. I directly test for this mechanism by combining
other survey questions and a lab-in-the-field elicitation with this natural experiment. First,
I simply ask farmers in the endline survey about the signs that they use to learn about
salinity on their soil. Table 5 shows that consistent with the theory, farmers experiencing a
salient shock disproportionately interpret more “generic” signals as indications of high salin-
ity, particularly as compared to those having experienced a subtle shift. This is consistent
with the identification problem: after a salty flood, farmers expect salinity to be a likely
environmental threat, and as a result, they interpret even generic indicators of crop health
like plant death and stunted height as indications that consistent with their prior belief,
salinity is high. Farmers experiencing a subtle shift show no similar pattern.

By the same underlying channel, farmers experiencing salinity intrusion into their irri-
gation water via a rising sea level shock are more likely to attribute physical indicators of
salinity to other causes. After the question referenced above in which I ask farmers to list all
features of the crop that might indicate salinity, I ask farmers to list any other environmental
causes that could generate the same symptoms. Despite reporting fewer symptoms overall,
especially among generic indicators of plant health (as indicated by the results in Table 5), I
find that farmers who experienced a subtle shift list significantly more other environmental
explanations that could disguise themselves as soil salinity.

Finally, I examine the dynamic consequences of these climate experiences on learning
using a lab-in-the-field exercise in which I show farmers images of unhealthy rice crops
54 Appendix Tables A.6 and A.7 present coefficients for the full difference-in-differences specifications for the
outcome of true soil salinity. Appendix Tables A.8 and A.9 does the same for the outcome of farmers’ beliefs.
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and ask them to list any potential explanations that might cause the plant to exhibit those
symptoms. This was the first question after the consent forms, so farmers were not primed to
think about salinity or any other environmental explanation. I ask this question both in the
baseline and endline, and I include images for which the true explanation is salinity and not.
I then estimate an expanded difference-in-differences specification interacting the natural
experiments described above with indicators for the endline survey and the picture actually
being caused by salinity. This captures the differential impact of having experienced a salty
flood on improvements in accuracy about diagnosing salinity issues over the course of the
2022-23 season (and the corresponding effect for subtle shifts). Table 6 shows that farmers
who experienced the salty flood become disproportionately more accurate at diagnosing
salinity issues in particular, highlighting that past experience can have persistent impacts on
learning itself as opposed to simply level effects. These specifications include farmer fixed
effects and picture fixed effects.

5 Consequences of Beliefs for Climate Adaptation

How do these patterns of beliefs shape decision-making? This section presents the results
from large-scale field experiments to measure the economic consequences of environmental
beliefs.55

5.1 The Causal Impact of Beliefs on Technology Adoption

I estimate the causal effect of environmental beliefs on farmers’ adoption of climate
technology using an information experiment centered around the salinity data I collect from
farmers’ plots. The script introduced this information to farmers by explaining that the salt
levels would be provided using both numbers and pictures and also in relative terms to the
government’s official recommendation regarding the soil salinity level above which farmers
should adopt saline-tolerant seeds. I embed this randomization into a Becker-DeGroot-
Marschak elicitation of farmers’ willingness-to-pay (WTP) for information about the amount
of salinity on their soil.56 To measure demand using this approach, beginning with a low
price, I ask farmers if they would be willing to purchase the item for that price.57 If they
55 For a discussion of the ethical considerations around all of the experiments in this project, see Appendix
Section G.
56 I pre-registered this experiment here. All randomization occurred within strata, which I define based on
the intersection of village with direction of soil salinity belief error, determined based off of farmers’ baseline
beliefs.
57 During piloting, it became clear that norms against accepting gifts for free distorted the results of the
BDM when beginning at 0 BDT. To circumvent this issue, I begin the price list at a small positive value,
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say yes, I increase the price and ask again, repeating until the respondent says no. I then
randomly select a price, and if the respondent was willing to purchase the good for that
amount, the transaction takes place. Following Dizon-Ross and Jayachandran (2022), I
elicit WTP for a plate as a benchmark good to include as a control.

In the case of soil salinity information, Farmers faced a price randomly drawn price
from a bi-modal distribution with nearly all of the mass split evenly between 0 and 500
BDT, while prices in between were drawn with probability .0001 each to preserve incentive
compatibility. Prior to the price list elicitation, most farmers viewed this information as
useful: 69.42 percent of farmers said it would be extremely or very helpful, while just 1.98
percent said it would not be helpful at all. Farmers’ demand reflects these attitudes: the
median farmer offered up to 30 BDT for the information, with an average value of 41.74 BDT,
and 84% of farmers had a positive willingness-to-pay. Within this information experiment,
I also randomize the type of information: some farmers were only offered average salinity
levels for their upazila, while others were in addition offered data on their own plots. I delay
discussion of this aspect of the experiment until the conclusion, but note the distinction for
now to explain the specification for estimating treatment effects.

As a first-stage, this information does shift farmers’ perceptions about the amount of
salt in their soil next year. I test for this effect by estimating equation 6, where Prior

denotes farmer i’s prediction about the 2022-23 soil salinity level on their plot, OwnTruth
signifies the true salinity as measured by the EC-meters, UpaTruth denotes the average
of these salinity readings across all participating farmers in i’s upazila, OwnTreatmenti
indicates whether farmer i received information about OwnTruth, and UpaTreatmenti does
the same for UpaTruth. Table 10 presents the results from these regressions, showing large
F-statistics regardless of whether I restrict the sample to those who pass the belief elicitation
comprehension checks or not. Consistent with soil salinity ultimately being quite low during
the 2022-23 season, most farmers in the treatment group updated downwards, expecting
lower salt levels in the future.

Yi = α + Priori + β1OwnTreatmenti + β2OwnTreatmenti ×OwnTruthi+

β3OwnTreatmenti×UpaTruthi+β4UpaTreatmenti+β5UpaTreatmenti×UpaTruthi+ε
(6)

Using treatment as an instrument, I can measure how demand for salinity tolerant seed
varieties varies with beliefs. I show that randomly providing farmers with information about

and only ask about 0 BDT if the respondent says no to that initial price.
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salinity content on their soils as measured by the EC-meters (using the same visual as the
belief elicitation to convey the information) shifts both their incentivized willingness-to-pay
for a salinity-tolerant seed variety and their expectations about agricultural behavior moving
forward. In this context, the information typically shifted farmers’ beliefs downward, with a
resulting decrease in the seed willingness-to-pay and a decline perceived likelihood of planting
a saline tolerant seed next season, as shown in Table 11.

5.2 Salinity-Tolerant Seed Experiment

How much does adaptation to salinity through seed choice impact farmers’ ultimate eco-
nomic well-being? To answer that question, I conduct a separate experiment, randomly
varying the marginal cost of planting saline-tolerant seeds during the baseline survey.58 Sim-
ilar to the soil salinity information above, I embed this randomization into the price drawn
during the Becker-DeGroot-Marschak elicitation of farmers’ WTP for a saline-tolerant vari-
ety.59 I draw the seed price from a distribution of prices that equals 0 BDT with probability
.49905, 200 BDT with probability .49905, and each price in between with probability .0001
to preserve incentive compatibility. Let Freei denote an indicator for whether farmer i was
randomly assigned a price of 0. To estimate the impact of adoption of the saline-tolerant
seed variety Toleranti on agricultural output Yi, I estimate the regression specification in
equation 7, instrumenting for adoption of seed 67 using Freei. Following the pre-specified
heterogeneity, my primary specification excludes the 31.07 percent of households who had
already purchased their seeds for the season at the time of the interview.

Yi = α + βToleranti + εi (7)

I “reversed” the experimental design in this format (randomizing seeds in the baseline and
information in the endline) in order to minimize the rounds of data collection necessary. In
order to interpret the impact on harvest as a potential consequence of information, I must
assume that the set of compliers is comparable across the two experiments: that is, that the
marginal seed user induced via the information treatment is not differentially selected from
the marginal seed user induced via the lower BDM price. In fact, an even weaker assumption
still allows me to take an intent-on-the-treated interpretation: if shifting beliefs about salinity
is equivalent to changing the marginal cost of purchasing saline-tolerant seeds, then I can
58 The endline survey exhibited an extremely low attrition rate of 1.14 percent. Farmers receiving a saline-
tolerant seed BDM price of 0 during the baseline were slightly more likely to not be found in the endline
(0.77 percentage points), an effect which is marginally statistically significant (p-value=0.08) but amounts
to a difference of just 9 farmers, too small to meaningfully impact any results.
59 I pre-registered this experiment here.

32

https://www.socialscienceregistry.org/trials/10333
https://www.socialscienceregistry.org/trials/10333
https://www.socialscienceregistry.org/trials/10333


link these two experiments together to draw conclusions about the impact of information on
profits.

I first find that 85.9 percent of farmers have a positive WTP for these seeds, and 38.7
percent have a WTP greater than the market price.60 Randomly assigning half of farmers a
price of zero, I find that being assigned a price of 0 during the BDM procedure increases the
likelihood of planting a salinity-tolerant seed by 13.87 percentage points, or 32 percent of
the control group mean of 42 percentage points. In both the reduced form and instrumental
variables framework, I find evidence that the treatment (and subsequent increase in salinity
tolerant planting) reduced agricultural profits, consistent with soil salinity being especially
low during the 2022-23 season. Together, these results show that environmental beliefs on
the margin have large economic consequences for farmers’ bottom-line.

5.3 Flood Risk Information Experiment

In an additional test of whether expectations shape adaptation to climate change, I test
whether farmers’ beliefs about the likelihood of flooding impacts their demand for a flood
insurance contract. Weather insurance poses many attractive features for mitigating the risk
associated with climate change, yet demand remains low across many developing countries
for a variety of reasons, including trust, financial literacy, and present bias, among others
(see Cole and Xiong (2017) for a review). In my sample, just 6.40 percent of farmers had
any kind of insurance contract against weather or natural disaster shocks. Misperceptions
about risk present one alternative explanation: if farmers underestimate the likelihood of
flooding, then this will suppress the market even if demand would be sufficient at actuarially
fair prices. I follow the literature and focus on indexed insurance contracts instead of the
traditional indemnity-based products which have largely been abandoned in contexts like
this one.

To measure demand for flood insurance, I elicit farmers’ willingness-to-pay (WTP) for
a hypothetical contract using a price list. Because only 17.44 percent of farmers had heard
about weather or natural disaster insurance, enumerators spent time explaining the basic
principles of the contract, using the visual aid shown in Appendix Figure C.4 to help farmers
understand. This exercise succeeded: 96.78 percent and 96.27 percent of farmers answered
each of two comprehension questions correctly.61 With equal probability, I randomized the
60 Because I was delivering the seed directly to the farmer and the BDM procedure is itself quite different
than the experience of purchasing in the market, the relative levels to the market price should be interpreted
cautiously.
61 In the analysis that follows, I exclude farmers who answer these comprehension questions incorrectly in
addition to those who fail the beliefs elicitation checks. For the full text of the explanation and these checks,
see Appendix Section C.3.
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insurance payout between 10,000 and 30,000 BDT in increments of 5,000, and then elicited
the highest willingness-to-pay for a monthly premium of that contract.62 Half of farmers
answered these questions during the baseline, and half answered during the endline.

Farmers’ expectations about the likelihood of experiencing a flood strongly predict their
demand for this hypothetical contract. I present results using an aggregate index of flood
risk, though all results are robust to using the individual components.63 To visualize the link
between beliefs and WTP, Figure 10 plots demand curves by quintile of this flood index. The
graph shows clear differences non-parametrically in the share of farmers willing to purchase
the insurance contract at a given price, particularly at low prices where the bulk of consumers
are marginal. What makes these demand curves look so different? To shed light on that
question, I calculate price elasticities using a log-log specification, interacting price with
beliefs. For statistical power, I pool the first and second quintiles into one category and the
third, fourth, and fifth into a second. Figure 11 plots these elasticities. Farmers with higher
beliefs about flood risk exhibit significantly higher price elasticities (p-value = 0.016).

The absence of true flood risk presents one clear challenge to interpreting the link between
expectations and WTP shown in those graphs. Of course, farmers’ beliefs likely reflect—at
least in part—their true exposure to flooding, and that could be driving demand. To speak to
this issue, Table 12 presents simple linear regressions predicting stated WTP using the flood
risk index and a battery of measures of flood risk, described in detail in Appendix Section
B.1. In all specifications, I include an indicator for the survey round, farmers’ WTP for a
plate from the BDM of the survey (following Dizon-Ross and Jayachandran (2022)), and
fixed effects for the insurance payout amount. I report heteroskedasticity-robust standard
errors. Column (1) presents the simple relationship between perceived flood risk and demand.
Columns (2) through (6) show how this coefficient changes with the addition of various
proxies for flood risk. Across all specifications, the coefficient remains either effectively the
same or in fact increases in magnitude, suggesting that beliefs shape demand above and
beyond the true local propensity for flood exposure. Column (7) embraces this logic one
step further with the inclusion of union fixed effects, testing whether beliefs help explain
WTP conditional on all other aspects that might shape demand within the village, including
the common component of expectations. Although the estimates are significantly noisier, I
62 I winsorize the willingness-to-pay values at 200 BDT per month, which affects 4 farmers.
63 I consider each of the following measures. First, I use the expected number of flood days in the next year
and the next five years based on the farmers’ answers to the flood risk belief elicitation questions. Second, I
calculate hazard rates from the number of years until farmers expect to have experienced a flood that lasts
for one day, three days, a week, or a month. Third, I use farmers’ responses to the questions about whether
flood risk has increased in the past 10 years, will increase in the next 10 years, and the order those two
questions were asked. I combine these into a single index following the procedure in Kling et al. (2007), and
standardize the resulting measure based on the control group mean and standard deviation.
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cannot reject that the point estimate matches that of Columns (1) through (6), even in this
particularly conservative specification.

One concern with a causal interpretation of these patterns is that an omitted variable
might be correlated with both perceived flood risk and insurance demand. In an attempt
to better isolate the causal impact of beliefs, I implemented an information experiment
among the half of the sample that answered these questions during the endline survey.64

Enumerators told a random half of farmers about historical flood incidence in their area
based on the analysis of satellite imagery described earlier in this paper. Specifically, the
information included the number of unions in their upazila that experienced a flood since
2002 according to that measurement, and conditional on at least one union having a flood,
the frequency of floods at an annual level. Table 13 presents the results from this experiment.
To measure the impact of information on beliefs, I first recalculate the flood index using only
those questions asked after the potential information treatment. This alternative measure
strongly predicts WTP, echoing the results in Table 12 as shown in Column (1). On average,
farmers update their beliefs about flood risk downwards after receiving this information, as
shown in the first-stage results in column (2). Though noisy, the reduced form and two-stage
least squares results of columns (3) and (4) suggest a causal link between perceived flood
risk and demand for index insurance.

How large is this effect of beliefs? To help quantify the magnitude, I use the random
variation from the insurance payout amount as a benchmark, as interpreting levels from price
lists like this one can be misleading. Despite the huge variation in potential compensation
(10,000 - 30,000 BDT, or approximately $93 - $279 USD), I find no evidence that farmers
demand responds to this amount. In an OLS regression controlling for survey round and
farmers’ WTP for a plate during the BDM, the coefficient is very close to zero and statistically
insignificant (p-value = 0.77). Appendix Figures A.11 and A.12 plot demand curves and price
elasticities by contract, again showing no difference across payouts.65 In the context of the
belief results, this underscores that the magnitude of the effect of expectations dwarfs the
impact of even a tripling of the insurance payout amount.
64 I pre-registered this design here. The script introducing the information included language about the
limitations of this methodology: “As part of this project, we measured flooding in each union using data
from satellites. These measures are not perfect, but they can help us understand how frequently floods
occur.” Because treatment status does not vary within the baseline, I omit that control from the analysis of
this experiment.
65 This null is consistent with a model in which damages from floods poorly correlate with flood incidence,
resulting in considerably less responsive utility gains to shifts in the financial payout. Indeed, I find evidence
of this mechanism in farmers’ answers to their expected financial damages to their homes conditional on
experiencing floods lasting for different amounts of time. On average, the standard deviation across these
five flood length categories is 51,425.74 BDT, highlighting the uncertainty farmers hold about potential harm
caused by flooding events.
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The hypothetical nature of this elicitation method raises concerns with this analysis if
farmers’ answers do not reflect meaningful variation in their willingness-to-pay. Like with the
incentivized Becker-DeGroot-Marschak method, I refrain from interpreting the levels from
these price lists, relying instead on relative differences across farmers. Nevertheless, the
results described above could still be biased if some additional factor—such as experimenter
demand—correlates with both the stated willingness-to-pay and farmers’ expectations about
flood risk. The information experiment helps to alleviate this concern: such an omitted
variable would also have to be impacted by the treatment providing historical flood incidence
in the area. As a further validation of the hypothetical method, however, I implement a
separate survey among a small sample of farmers in some of the same villages as the main
survey sample, drawing from the initial household listing. I elicit both the hypothetical
willingness-to-pay using the same questions as the main survey and additionally conduct a
Becker-DeGroot-Marschak elicitation of demand for a 10,000 BDT flood insurance contract. I
find a strong, statistically significant relationship between the incentivized and unincentivized
versions of the question, a reassuring sign that the WTP I elicited on the main sample
captures a real dimension of demand.66

6 Learning Counterfactuals and Policy Simulations

How large of a role do beliefs play in adaptation to climate change? The experimental
results show that environmental expectations have large causal impacts on choice, but char-
acterizing the overall magnitude is challenging from those reduced form estimates alone for
several reasons. First, my primary outcome is willingness-to-pay as captured via the BDM
mechanism. The nature of this elicitation (for instance, giving farmers 500 BDT immediately
prior to the measurement) likely introduces level effects, as suggested by the significant share
of people willing to pay above market price. Second, the impact of environmental beliefs on
seed choice is non-linear. Third, the experiment captures how demand for salinity-tolerant
seeds varies with beliefs about next season’s salinity, measured over the summer. Farmer’s
beliefs likely evolve between the endline and the actual planting decision in the winter as
they observe more information about their land, and the ideal elasticity relates to beliefs at
the time of planting. Fourth, I can only identify the local average treatment effect of those
farmers whose beliefs were influenced by the experiment.

Because of those limitations, in this section I turn to a structural model of demand for
climate adaptation. Specifically, I estimate a random utility model of seed choice (McFadden,
1974; Train, 2009). In doing so, I can explicitly account for the non-linear role of beliefs to
66 For details on this data collection and result, see Appendix Section C.3.
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answer questions like: how would seed choice change if farmers had completely accurate
beliefs about soil salinity? What would happen if farmers learned from subtle shifts in the
same way as salient shocks? How effective would a government information intervention
policy be at increasing climate adaptation?

6.1 Model of Seed Choice

I expand the set-up from Section 3 to allow farmers indexed by i living in village v to
choose among Jv dry-season rice varieties. To simplify the estimation, I focus on the seed
choice that each farmer plants on the largest share of their land, such that each farmer
chooses one seed among the set Jv. Because I cannot observe the true set of potential seed
choices faced by each farmer, I define Jv to be the superset of all seeds planted on any
amount of land by any farmer i ∈ v.

Equation 8 captures the indirect utility of farmer i choosing seed j, where xij is a vec-
tor of seed-specific characteristics, βi are random coefficients that vary over farmers in the
population, wij is a vector of seed-specific characteristics, zi is a vector of farmer-specific
characteristics, cj are intercepts, and εij are unobserved random taste shocks, which I model
as independent type I (Gumbel-type) extreme-value random variables.

Uij = Vij + εij = xijβi +wijα + ziδj + cj + εij (8)

By including random coefficients, I allow for correlation of choices across alternatives and
therefore do not have to assume independence of irrelevant alternatives. I do not directly
estimate βi but rather assume they have a multivariate normal distribution βi ∼ N (µ,Σ)

and estimate µ and Σ. Given this utility function, the probability of the ith farmer choosing
seed j is given by equations 9 and 10. Because the integral in Equation 10 has no closed-form
solution, I compute it using maximum simulated likelihood.

Pij(β) =
eVij∑

k∈Jv
eVik

(9)

Pij =

∫
Pij(β)f(β)dβ (10)

6.2 Estimating the Demand Model

To estimate this model, I begin by building a database of seed characteristics. For the
vector wij, I include seed price, indicators for whether the modal farmer I survey reported
that a feature of that seed was processing ease, market demand, good taste, and nice color,
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along with whether the modal farmer reported that seed being resistant to pests and resistant
to salinity.67 For the vector xij, I include the interaction of salinity-tolerant status with the
error in farmers’ beliefs about the amount of salt in their soil. In my default specification,
I do not include any further farmer-specific controls zi. I cluster all standard errors at the
farmer level. I estimate the model exclusively among the treatment group from the seed
experiment, and always exclude those who fail the beliefs elicitation comprehension checks
at baseline. This provides a natural out-of-sample goodness-of-fit test by examining how the
predictions of this model perform among the control group.

The results show that the model performs well and that beliefs about salinity levels
strongly impact adoption of salinity tolerant seeds. First, coefficients in general tend to be
consistent with our priors about how adoption should respond to seed attributes. Market
demand for the harvested rice and the associated selling price are both strongly positively
related with seed adoption, for example. Second, the standard deviation of the random
coefficients for the interaction of salinity tolerance and belief error is positive and statistically
different from zero, allowing me to reject that independence from irrelevant alternatives
would apply in this setting. Third, the model’s predictions out of sample in the control
group strongly predict farmers’ actual behavior in that population. Table 9 presents simple
regressions of actual seed choice on the model’s predicted probabilities, separately for the
treatment group in the seed experiment (upon which the demand model was estimated)
and the control group. In both cases, I cannot reject a coefficient of 1: in other words, as
the model’s prediction about whether seed is selected increase by 1, so to does the actual
behavior of farmers.

How does seed adoption change under alternative beliefs? I estimate these counterfactu-
als by calculating the marginal predicted choice probability for each seed under alternative
variables using the structure of the demand model. Figure 9 plots these predicted adoption
probabilities by error separately for farmers whose soil salinity initially fell below the gov-
ernment recommended threshold of 4.00 dS/m for switching to salinity tolerant seeds and
those for whom their measurement fell above. Those facing high salinity levels always ex-
hibit higher adoption rates regardless of their beliefs, reflecting differences in the seed market
across places. Yet for both groups, beliefs play a large role in shaping adoption. On average,
moving from the 10th percentile to the 90th percentile in belief error corresponds to an 80.87
percent increase in the probability of adoption a salinity-tolerant seeds.
67 Note that I use farmers’ beliefs about seeds because that is the characteristic of the variety upon which
they make their decision.
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7 Conclusion

This paper has documented the importance of environmental beliefs in shaping adapta-
tion to climate change.

One clear policy recommendation emerging from these results is the value of collecting
and disseminating information about local climate conditions. From a policy perspective,
providing farmers with soil salinity information collected from their own plots presents a
significant cost—requiring individual-level analysis of farmers’ own plots. Instead, providing
farmers with aggregate averages at a higher-geographic level presents an appealing possible
alternative. In this context, upazila represents the relative geographic level for this policy
question as the administrative unit at which the Bangladesh government currently collects
and reports soil salinity data. The success of this type of policy hinges on the answer
to two questions. First, do true salinity conditions covary enough within these areas to
meaningfully speak to farmers’ own agricultural decisions? I examine this question using
the new soil salinity data I collected, and find that for the most part, the aggregate value
accurately captures farmers’ own experiences. The correlation between the salinity measured
from farmers’ own plots and the mean value across all plots from which I collect data in their
upazila is 0.81. To put this magnitude in perspective, I provide two benchmarks. First, the
correlation between a farmers’ own plot and their village average is 0.92.68 Second, I take
advantage of the three measurements taken by enumerators on each plot during each round
of soil salinity data collection. This gives me six pairwise correlations of salinity on the
same land on the same date, helping to provide a sense of the maximum correlation given
the sensor’s measurement error. On average, the average pairwise correlation from these
measurements is 0.90. To view this another way, the government threshold for switching
to saline tolerant seeds is 4.5; the recommendation based on data from a farmer’s own plot
disagrees with that from the upazila average just 2.57 percent of the time.

Do farmers themselves recognize this strong agronomic link between their own plots and
that of their peers in the upazila? To speak to that second key question for this overall
policy, I consider two types of evidence. First, I directly measure farmers’ subjective views
of the similarity of their plots to that of their neighbors, both within their village and within
their larger upazila. Consistent with the soil salinity measurements, farmers perceive a lower
spatial covariance at higher geographic levels: 25.48 percent say that the salt on their plot
is extremely or very similar to their village average, as compared to 9.23 percent for the
upazila average. In fact, farmers for whom the difference in absolute value between their
68 Note that both the upazila and village correlations are upwardly biased towards the truth because of
imputations used replace missing salinity measurements (due to flooding or farmer unavailability), though
this procedure reflects a reasonable implementation of this policy in practice.
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plot and their upazila mean minus the absolute value of their plot and village mean are also
significantly more likely to qualitatively answer that their salt is more similar to their village
neighbors (p-value = 0.02). Second, I take a revealed preference approach and embed an
additional arm within the information experiment, offering a random 75 percent of farmers
information both about their own soil salinity and the average salt levels for all farmers
in their upazila, while the remaining farmers could only purchase information about the
latter upazila mean figure. I find no evidence that farmers value these aggregate figures less
than data about their own plots. Appendix Figure A.9 plots the distribution of farmers’
demand for information separately by those offered the upazila-average only compared to
those offered their own plot’s data as well, and the distributions almost entirely overlap.
In OLS regressions predicting demand for information conditional on WTP for the plate,
I find no strong evidence of a systematic impact of the format of information provided,
with a 95 percent confidence interval of -6.53 to 2.61. Overall, these results suggest that
although farmers indeed recognize that information at higher geographic aggregates applies
less to their own agricultural conditions, providing this (much less costly) information can
nevertheless still shift beliefs.
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Figure 1: Soil Salinity Beliefs vs. Agronomic Truth

Figure 2: Histogram of Belief Errors

Note: Figure 1 plots a binned scatter plot of farmers’ beliefs about the 2022-23 season’s average soil salinity
against the ground truth based on direct agronomic readings of their soil. The dashed gray line denotes
the 45-degree line. Figure 2 plots a histogram of the errors in beliefs. The dashed vertical red line denotes
perfect accuracy. Mass to the right of that line captures overestimation, and mass to the left captures
underestimation. 49



Table 1: Soil Salinity Beliefs vs. Agronomic Truth

(1) (2)
Salinity Belief Salinity Belief

Salinity Truth 0.786∗∗∗ 0.805∗∗∗
(0.121) (0.111)

Constant 0.999∗ 0.913∗
(0.547) (0.504)

Include Comp. Check Failures No Yes
Outcome Mean 4.617 4.633
Observations 2,068 2,271
R2 0.034 0.038
p-value: β True Salinity = 1 0.078 0.080
p-value: β Constant = 0 0.068 0.070

Note: Table 1 presents bi-variate regressions of farmers’ beliefs about salinity on the true soil salinity
measurements. The agronomic truth is based off of the best prediction of seasonal exposure given the
fall 2022 measurements. The outcome in each regression is farmers’ beliefs, which captures farmers’
expectations about soil salinity over the course of the 2022-23 season, measured during the fall. Column
(1) includes the pre-specified cut of excluding those farmers who fail the comprehension checks during the
belief elicitation practice. Column (2) includes the full sample. All specifications report heterogeneity-
robust standard errors.
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Table 2: Planting Behavior and Salinity Belief Errors

(1) (2) (3)
Intend

To Plant
Salinity-Tolerant

Seeds

Actual Share
Land Planted With

Salinity-Tolerant Seeds
(Perceived Status)

Actual Share
Land Planted With

Salinity-Tolerant Seeds
(Actual Status)

Salinity Belief - Truth 0.0384∗∗∗ 0.0207∗∗∗ 0.0181∗∗∗
(0.00355) (0.00365) (0.00294)

True Salinity 0.180∗∗∗ 0.123∗∗∗ 0.135∗∗∗
(0.0164) (0.0167) (0.0146)

Observations 2,068 2,008 2,008
Outcome Mean 0.412 0.168 0.168

Figure 3: Planting Behavior and Salinity Belief Errors

(a) Salinity-Tolerant Seed Intention (b) Share Land with Salinity-Tolerant Seeds

Note: Table 2 presents regressions of the farmers’ planting behavior on the error in their salinity beliefs
(defined as beliefs minus the truth) and the true agronomic salinity on their plots. Column (1) uses
as an outcome whether farmers report intending to plant any salinity-tolerant variety on their plot.
Column (2) reports the total share of land across all plots on which farmers planted a seed that they
consider to be salinity-tolerant. Column (3) shows the same, this time using my assessment of whether
the seed is salinity-tolerant based on official agronomic records as opposed to the farmers’ own reports.
All regressions exclude those who fail the beliefs comprehension checks during the practice elicitation
and report heteroskedasticity-robust standard errors. Figures 3a and 3b visualize the relationships in
Columns (1) and (2) of Table 2 using binned scatter plots.
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Figure 4: The Spatial Concentration of Salinity Belief Errors

Note: Figure 4 plots cumulative distribution functions at the village level of the probability that two
randomly drawn people from that village have opposite signed salinity bias, calculated as 1 minus the
Hirschman-Herfindahl Index where the group shares are the proportion of people over- and underesti-
mating the salinity on their plot. The blue line shows the true data. The gray lines plot the cumulative
distribution functions for 100 placebo distributions after randomly re-assigning villages.
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Table 3: Predictors of Soil Salinity Belief Inaccuracy

|Salinity Beliefs - Truth| (Standardized)

(1) (2) (3) (4)
Log Plot Area -0.119∗∗∗

(0.0146)

Age (10 years) -0.0881∗∗∗
(0.0126)

Peers View
Extremely

Knowledgeable -0.251∗∗∗
(0.0914)

Peers Follow
Seed Advice -0.674∗∗∗

(0.0706)
Observations 2,008 2,068 2,035 2,035
Outcome Mean -0.020 -0.002 0.001 0.001

Note: Table 3 presents regressions prediction the absolute value of salinity beliefs minus the agronomic
truth, normalized to have mean equal to 0 and standard deviation equal to 1. Column (1) regresses this
outcome on the log of total harvested land as measured in the endline survey. Column (2) regresses this
outcome on the farmer’s age, scaled by 10 years for readability. Column (3) regresses this outcome on
the share of other farmers in the village who say that the respondent is extremely knowledgeable about
farming. Column (4) regresses this outcome on the share of other farmers in the village who say that they
would consider following the respondent’s advice about what seed to plant. All specifications include the
true salinity level interacted with fixed effects for each ventile. All regressions exclude those who fail the
beliefs comprehension checks during the practice elicitation and report heteroskedasticity-robust standard
errors.
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Figure 5: Simulated Belief Movement in Conceptual Framework

(a) Absolute Changes in Beliefs: High Yield (b) Absolute Changes in Beliefs: Low Yield

(c) Relative Changes in Beliefs: High Yield (d) Relative Changes in Beliefs: Low Yield

Note: Figure 5 shows changes in beliefs for simulated data based on the model. In all simulations, I assume
ρ = .33, that is their is an equal chance of a high, low, and neutral productivity shock. The left column
corresponds to observing high yield in the first period, and the right column corresponds to observing
low yield. Figures 5a and 5b illustrate how beliefs change after observing the new data, where the arrows
begin at the prior. Figures 5c and 5d scale this change to account for the mechanical limitations of belief
updating given the bounds, shading based on the relative change in beliefs at each prior.
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Table 4: Impact of Climate Shocks on True Salinity and Salinity Beliefs

True Salinity Salinity Beliefs

(1) (2) (3) (4)
Flood × Saltier 0.157∗∗∗ 0.909∗∗

(0.0531) (0.395)

Closer to Ocean × Sea Level Rise × Ocean Salinity 0.113∗ 0.194
(0.0581) (0.190)

Observations 2075 2075 2068 2068
Clusters 250 250 250 250
Control Mean 4.605 4.605 4.617 4.617

Note: Table 4 displays only the main interaction term of the difference-in-differences. Standard errors are
clustered at the village level. The outcome in columns (1) and (2) is the true soil salinity as measured
by agronomic sensors. The outcome in columns (3) and (4) is farmers’ mean belief about soil salinity.
Independent variables Saltier, Closer to Ocean, Sea Level Rise, and Ocean Salinity are all measured in
standard deviations. Sample restricted to farmers who passed belief comprehension checks.

Figure 6: Impact of Climate Shocks on True Salinity and Salinity Beliefs

Note: Figure 6 plots the coefficients from Table 4 and reports p−values testing for equality between
coefficients.
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Table 5: Impact of Climate Shocks on Interpretation of Environmental Signals

Use of Generic
Signals to Learn
About Salinity

Attribution of
Salinity Symptoms
To Other Causes

(1) (2) (3) (4)
Closer to Ocean × Sea Level Rise × Ocean Salinity -0.0474 0.457∗∗

(0.0646) (0.187)

Flood × Saltier 0.187∗∗∗ -0.0413
(0.0529) (0.198)

Observations 2056 2056 2056 2056
Clusters 250 250 250 250
Control Mean 1.074 1.074 2.451 2.451

Note: Table 5 displays only the main interaction term of the difference-in-differences. Standard errors are
clustered at the village level. The outcome in columns (1) and (2) is the sum of indicators for whether
the farmer reports using the height of plants or plant death as an indicator from which they can learn
about soil salinity. The outcome in columns (3) and (4) is the total number of other potential causes
that farmers report saying could exhibit the same symptoms as high soil salinity. Independent variables
Saltier, Closer to Ocean, Sea Level Rise, and Ocean Salinity are all measured in standard deviations.
Sample restricted to farmers who passed belief comprehension checks.

Table 6: Dynamic Impacts of Climate Shocks on Learning

(1) (2)
Closer to Ocean × Sea Level Rise × Ocean Salinity 0.00342

(0.0140)

Flood × Saltier 0.0621∗
(0.0335)

Observations 20655 20655
Farmers 2075 2075
Clusters 250 250
Control Mean 0.141 0.141

Note: Table 6 displays only the main interaction term of the difference-in-differences in the natural exper-
iments, interacting additionally with indicators for the endline survey and the true cause of the image
being about soil salinity. Standard errors are clustered at the village level. Outcome is the whether the
farmer answered the question correctly. Independent variables Saltier, Closer to Ocean, Sea Level Rise,
and Ocean Salinity are all measured in standard deviations. Sample restricted to farmers who passed
belief comprehension checks.
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Figure 7: Impact of Climate Shocks on Interpretation of Environmental Signals

Note: Figure 7 plots the coefficients from Table 5 and reports p−values testing for equality between
coefficients.

Table 7: Impact of Salinity-Tolerant Seeds

(1) (2) (3) (4)
Tolerant Seed Share

(FS)
Profits
(OLS)

Profits
(RF)

Profits
(IV)

Offered Free Seeds 0.0898∗∗∗ -0.0918∗∗
(0.0143) (0.0428)

Salinity Tolerant Seed Share -0.388∗∗∗ -1.022∗∗
(0.0605) (0.483)

Observations 2015 2015 2015 2015
Control Mean 0.124 0.021 0.021 0.021
First Stage

F-Stat 39.938
Note: Table 7 presents results on the salinity-tolerant seed experiment. All specifications exclude those

farmers who fail the baseline belief elicitation checks and report heteroskedasticity robust standard errors.
Agricultural profits in Columns (2) through (4) have been standardized.
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Table 8: Random Coefficients Demand Estimates

(1) (2)
Seed
Seed Price (100s BDT) 0.962 0.963

(0.0391) (0.0395)

Salinity Tolerant 1.040 1.026
(0.145) (0.147)

Salinity Tolerant × Belief Error (dS/m) 1.112∗∗ 1.115∗∗
(0.0385) (0.0418)

Selling Price (100s BDT) 1.030 1.030
(0.0191) (0.0195)

Growth Duration 0.999 0.999
(0.00477) (0.00480)

Processing Ease 0.686 0.683
(0.539) (0.541)

Market Demand 2.611∗∗∗ 2.645∗∗∗
(0.365) (0.381)

Good Taste 0.643∗∗∗ 0.642∗∗∗
(0.0771) (0.0774)

Nice Color 0.399∗ 0.387∗
(0.179) (0.180)

Pest Tolerant 1.192 1.189
(0.160) (0.162)

/Normal
sd(seed_saltolbelief) 1.201

(0.221)
Observations 4469 4469
Farmers 724 724

Note: Table 8 presents the estimates from the random coefficients demand estimation of seed choice.
The sample only includes farmers in the treatment group from the seed experiment and excludes all
those who fail the baseline belief elicitation comprehension checks. I report odds-ratios, but the stars
denote statistical significance of the original coefficients (unexponentiated). I allow random coefficients
for the interaction between salinity tolerant seeds and belief errors, where belief errors are defined as the
difference between farmers’ predictions of soil salinity on their plots for 2022-23 and the best agronomic
prediction for the same period based on the fall EC-meter readings.
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Table 9: Demand Model Out-of-Sample Performance

(1) (2)
Control

(Out-of-Sample)
Treatment
(In-Sample)

Model Prediction 0.981∗∗∗ 1.034∗∗∗
(0.0359) (0.0364)

Constant 0.00310 -0.00547
(0.00579) (0.00592)

Observations 4678 4455
Farmers 754 725

Note: Table 9 provides out-of-sample tests for the performance of the demand model. The outcome is a
binary indicator for whether that seed is the one that farmer’s planted the largest share of their land in
the 2022-23 season. The predictor is the model’s predicted probability of that seed being chosen.

Figure 8: Demand Model Out-of-Sample Performance

Note: Figure 8 plots a binned scatter plot comparing actual seed choice to the predicted probability
of selecting a seed from the structural demand model, separately by the seed experiment treatment
group (on which the model was estimated) and the control group. Those who failed the baseline belief
comprehension checks are excluded.
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Figure 9: Predicted Choice Probability Under Alternative Salinity Beliefs

Note: Figure 9 uses the marginal predicted choice probability from the structure of the model to evaluate the
predicted choice probabilities for the primary salinity tolerant seed used in my sample under alternative
belief errors. Here, belief error is defined as the gap between farmers’ prediction for soil salinity over the
2022-23 season and the best agronomic prediction based on the fall reading.
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Table 10: Soil Salinity Information Experiment: First-Stage

(1) (2) (3)
Prior 1.361∗∗∗ 1.403∗∗∗ 1.377∗∗∗

(0.0829) (0.0863) (0.0894)

Own Truth - Prior 1.108∗∗∗ 1.153∗∗∗ 1.134∗∗∗
(0.0881) (0.0924) (0.0942)

Own Treatment 0.268 0.229 0.329
(0.190) (0.203) (0.211)

Own Treatment x (Own Truth - Prior) -0.832∗∗∗ -0.865∗∗∗ -0.842∗∗∗
(0.208) (0.218) (0.228)

Own Treatment x (Upa Truth - Prior) 0.980∗∗∗ 0.997∗∗∗ 0.992∗∗∗
(0.210) (0.220) (0.230)

Upa Treatment 0.244 0.180 0.305
(0.283) (0.296) (0.313)

Upa Treatment x (Upa Truth - Prior) 0.243∗∗∗ 0.255∗∗∗ 0.276∗∗∗
(0.0813) (0.0845) (0.0872)

Constant 1.162∗∗∗ 1.069∗∗∗ 1.119∗∗∗
(0.228) (0.238) (0.247)

Sample Full Pass EL Pass BL+EL
Observations 2245 2035 1864
(β3 + β4) = β5 : p− val 0.262 0.165 0.162
R2 0.138 0.148 0.140
F-statistic 44.390 43.905 38.274

Note: Table 10 presents the first-stage regressions of the impact of receiving information about soil salinity
over the 2022-23 season on farmers’ predictions about soil salinity over the 2023-24 season. Column (1)
includes all respondents; column (2) includes only those farmers who passed the endline belief elicitation
comprehension checks; and column (3) includes only those who passed both the baseline and the endline
comprehension checks. All specifications report heteroskedasticity robust standard errors.
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Figure 10: Demand Curves for Index Insurance by Perceived Flood Risk
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Figure 11: Flood Insurance Elasticity by Perceived Flood Risk
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Note: Figure 10 plots demand curves for the hypothetical flood index insurance product by quintile of
the perceived flood risk index (see Appendix Section C.2 for details). Figure 11 plots the price elasticity
for the hypothetical flood insurance contract separately by two categories of perceived flood risk. To
calculate the elasticity, I estimate a log-log specification interacting belief category with price. The first
pools the first and second quintiles of the flood risk belief index, and the second pools the third, fourth,
and fifth quintiles.
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Table 11: Soil Salinity Information 2SLS: Demand for Salinity-Tolerant Seeds

(1) (2) (3)
Salinity Belief 2023-24 3.043∗∗ 3.012∗∗ 3.136∗

(1.487) (1.513) (1.602)
Observations 2245 2035 1864
First Stage F-statistic 50.62 49.91 43.07

Note: Table 11 regresses demand for salinity-tolerant seeds as measured via the BDM against farmers
beliefs about soil salinity in the upcoming season, instrumenting for beliefs using the experimental vari-
ation from the information treatment shown in Table 10. Regressions control for their willingness-to-pay
for salinity-tolerant seeds at baseline and treatment status in the seed experiment. Column (1) includes
all respondents; column (2) includes only those farmers who passed the endline belief elicitation com-
prehension checks; and column (3) includes only those who passed both the baseline and the endline
comprehension checks. All specifications report heteroskedasticity robust standard errors.
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Figure A.1: Farmers’ Beliefs About the Returns to Switching to Salinity-Tolerant Seeds

Note: Figure A.1 plots how farmers beliefs about the returns to planting salinity-tolerant seeds as mea-
sured as a share of their total expected yield relates to their belief about the salt content of their soil.
The vertical dashed gray line denotes the threshold above which the government recommends adopting
salinity-tolerant varieties.
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Figure A.2: Beliefs about Flood Risk: Elicitation #1
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Figure A.3: Beliefs about Flood Risk: Elicitation #2
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Note: Figures A.2 and A.3 present farmers beliefs about flood risk. Figure A.2 plots the cumulative
distribution function across farmers of expected number of flood days averaging across bins in the button
elicitation. Figure A.3 plots the distribution of farmers’ responses to the question, “How many years do
you think it would take for a [TIME] long flood to happen in this village?” where [TIME] is one-day,
three-day, week, and month.
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Figure A.4: Flood Perceptions Compared to Past Inundation Exposure

Note: Figure A.4 plots a binned scatter plot comparing farmers’ beliefs about flooding next year against
the satellite-derived measure of their past flooding exposure in the village. The coefficient and intercept
from a bi-variate regression with robust standard errors are shown. The sample excludes farmers who
fail the belief comprehension checks for the round in which the flooding question was asked.
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Figure A.5: Distribution of Soil Salinity Beliefs
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Figure A.6: Distribution of Rainfall Intensity Beliefs
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Note: Figure A.5 plots the distribution of farmers’ mean salinity belief as elicited during the baseline
survey. Figure A.6 plots the distribution of farmers’ beliefs about the share of rainy days during the
monsoon season for three different periods: the past (five or ten years earlier than the elicitation), the
present (the most recent season), and the future (10 years from the elicitation year).
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Figure A.7: Map of Average Soil Salinity from EC-Meter Measurements

Note: Figure A.7 maps the average soil salinity level within each union based on the measurements collected
directly from farmers’ plots over the course of the 2022-2023 season.
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Figure A.8: Change in Soil Salinity over 2022-23 Season

Note: Figure A.8 graphs the distributions of the best prediction of the average soil salinity on farmers
plots. The blue bars denote the histogram of seasonal salinity predicted based on the fall soil readings
only. The red bars denote the same, now including the spring readings into the prediction as well.
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Figure A.9: Distribution of Farmers’ Willingness-to-Pay for Soil Salinity Information
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Figure A.10: Figure A.9 plots histograms showing the distribution of farmers’ WTP for
the soil salinity information as elicited via the Becker-DeGroot-Marschak price list. The
blue bars denote the distribution for farmers offered information about both the average
soil salinity level for all farmers in their distribution and their own plots, while the red bars
shows the equivalent for farmers only offered information about the upazila average. For the
purposes of this graph, I winsorized WTP at 200 BDT.
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Figure A.11: Demand Curves for Index Insurance by Perceived Flood Risk
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Figure A.12: Flood Insurance Elasticity by Perceived Flood Risk
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Note: Figure A.11 plots demand curves for the hypothetical flood index insurance product by payout
amount of the contract. Figure A.12 plots the price elasticity for the hypothetical flood insurance contract
separately by this same amount. To calculate the elasticity, I estimate a log-log specification interacting
payout with price.
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Figure A.13: Illustration of Rising Sea Levels’ Impact on Soil Salinity

Note: Figure A.13 presents a diagram from the United States Environmental Protection Agency illustrating
the dynamics between rising sea levels and the contamination of irrigation sources.
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Table A.1: Farmer Survey Demographics

Mean Median
Household Size 4.7 4
Female .033 0
Age 46 45
Years of Schooling 6.4 5
No Schooling .21 0
Fewer than 5 Years of Schooling .52 1
Completed Primary Schooling .31 0
High School or Above .13 0
Annual Earnings (USD) 1,656 1,365
Number of Plots 2.9 2
Survey Plot Size 46 33
Years Farming 22 20
Years Farming on Survey Plot 13 10
Lived Elsewhere in Past .049 0
N 2,261

Note: Table A.1 presents summary statistics for the main sample of farmers. The survey plot is the plot
on which most of the survey questions focused, which was randomly selected with weights proportional
to size.

Figure A.14: Photograph of Salt Visible on Soil Surface

Note: Figure A.14 shows a photograph I took of soil with salt visible on the surface from a village in
Khulna.
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Table A.2: Signs Used by Farmers to Assess Soil Salinity

Share Using Sign
Look for white powder on the ground 0.432
Taste the soil 0.027
Taste the water 0.086
Red patches on the leaves 0.354
White patches on the leaves 0.072
Brown patches on the leaves 0.105
Brown leaves 0.108
Small plants/stunted height 0.549
Plant death 0.232
Use sensor 0.002
Ask Agricultural Officer/Dealer 0.004
Ask friends/family members/neighbors 0.026
Other 0.057
Don’t use any signs 0.070
N 2,279

Note: Table A.2 presents the share of farmers using each indicator as a sign to assess soil salinity on their
plots, as measured during the baseline survey. These answers come from the question, “What signs do you
use to figure out the amount of salt in the soil?” Enumerators were instructed not to read out possible
answers to the respondents.

Table A.3: Farmers’ Perceptions of Symptoms of High Soil Salinity

Share Using Sign
Red Patches on the Leaves 0.641
White Patches on the Leaves 0.084
Brown Patches on the Leaves 0.128
Brown Leaves 0.134
Small Plants/Stunted Height 0.784
Plant Death 0.503
N 2,253

Note: Table A.3 presents the share of farmers mentioning each response to the question, “If you had too
much salt in your soil, how do you think that would impact what your rice plants look like” in the endline
survey.
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Table A.4: Role of Measurement Error in Salinity Belief Inaccuracy

(1) (2) (3)
Binary
Belief

Continuous
Belief

Continuous
Belief

Beliefs - Truth 0.0286∗∗∗
(0.00396)

True Salinity 0.454∗∗∗
(0.141)

Leave-Out Mean Salinity 1.180∗∗∗
(0.126)

Constant 0.381∗∗∗ 2.262∗∗∗ -0.821
(0.0140) (0.644) (0.567)

Observations 2,068 1,151 2,068
Outcome Mean 0.444 4.364 4.617
R2 0.025 0.012 0.053

Note: Table A.4 presents regressions testing for the role of measurement error in explaining the lack of
explanatory power of true soil salinity on farmers’ beliefs. Column (1) regresses whether farmers answered
“Yes” in response to the question, “Do you think the soil on plot [X] is salty?” on the error between farmers’
continuous belief and the agronomic measure. Columns (2) and (3) both use this continuous belief as
the outcome. In column (2), the specification restricts to only those farmers who say they were not at
all confused during the belief elicitation. In column (3), the predictor is the village leave-out mean of the
agronomic soil salinity. All regressions exclude those who fail the beliefs comprehension checks during
the practice elicitation and report heteroskedasticity-robust standard errors.

Table A.5: Examples of Salient Shocks and Subtle Shifts for Different Environmental Threats

Environmental
Risk

Salient
Shock

Subtle
Shift

Flood risk Flood Marginal riverbank erosion
Soil salinity Saline flood Salinity intrusion into groundwater
Rainfall Drought Fewer days of rain
Temperature Heat wave Slightly higher temperatures
Cyclone risk Cyclone More intense storms in ocean
Air Pollution Vision-impairing pollution Marginally higher pollution
Wildfire risk Wildfire Longer periods without rain

Note: Table A.5 provides examples of salient shocks and subtle shifts across a host of different environmental
threats.

77



Table A.6: Salient Shock: Salty Flood Impacts on True Soil Salinity

(1) (2) (3)
Flood -0.314∗ -0.309∗ 0.0377

(0.181) (0.167) (0.0842)

Saltier 0.406∗∗∗ 0.517∗∗∗
(0.0862) (0.0905)

Flood × Saltier 0.157∗∗∗ 0.117∗∗
(0.0531) (0.0557)

Constant 4.644∗∗∗ 4.650∗∗∗ 4.613∗∗∗
(0.0405) (0.0386) (0.0349)

Observations 2075 2075 2075
Clusters 250 250 250
Control Mean 4.605 4.605 4.605
Flood Risk Controls Yes Yes No

Note: Table A.6 presents results from the difference-in-differences specification comparing the differential
impact of salty floods on the agronomic measure of soil salinity. Column (1) presents regression results of
the impact of floods alone, controlling for the machine learning generated flood risk measure. Columns
(2) and (3) estimate the full difference-in-differences specification, where saltier is measured in terms of
standard deviations. Column (2) is my preferred specification; column (3) does not control for baseline
flood risk. All standard errors are clustered at the village level. Regressions exclude farmers who failed
the baseline beliefs elicitation comprehension checks.
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Table A.7: Subtle Shift: Salinity Intrusion’s Impact on True Soil Salinity

(1) (2)
Sea Level Rise 0.286∗∗∗ 0.284∗∗∗

(0.0913) (0.0991)

Ocean Salinity -0.441∗∗∗ -0.372∗∗∗
(0.0927) (0.103)

Sea Level Rise × Ocean Salinity 0.192∗∗∗ 0.0432
(0.0541) (0.0638)

Closer to Ocean 0.179∗∗
(0.0711)

Closer to Ocean × Sea Level Rise 0.181∗∗
(0.0911)

Closer to Ocean × Ocean Salinity -0.297∗∗∗
(0.0976)

Closer to Ocean × Sea Level Rise × Ocean Salinity 0.113∗
(0.0581)

Constant 4.430∗∗∗ 4.530∗∗∗
(0.0582) (0.0757)

Observations 2075 2075
Clusters 250 250
Control Mean 4.605 4.605

Note: Table A.7 presents results from the triple difference-in-differences specification comparing the dif-
ferential impact of being closer to the coast while being exposed to relatively higher sea levels and ocean
salinity on the agronomic measure of soil salinity. Column (1) presents regression results of a difference-
in-difference specification ignoring distance to the coast and just isolating the shocks to sea level elevation
and ocean salinity. Column (2)—my preferred specification—additionally interacts with distance to the
coast. All standard errors are clustered at the village level. Regressions exclude farmers who failed the
baseline beliefs elicitation comprehension checks. All variables are measured in terms of standard devia-
tions.
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Table A.8: Salient Shock: Salty Flood Impacts on Soil Salinity Beliefs

(1) (2) (3)
Flood 0.433 0.143 0.661

(0.776) (0.763) (0.503)

Saltier 0.466 0.737∗∗
(0.346) (0.352)

Flood × Saltier 0.909∗∗ 0.811∗∗
(0.395) (0.396)

Constant 4.563∗∗∗ 4.569∗∗∗ 4.520∗∗∗
(0.166) (0.167) (0.151)

Observations 2068 2068 2068
Clusters 250 250 250
Control Mean 4.617 4.617 4.617
Flood Risk Controls Yes Yes No

Note: Table A.8 presents results from the difference-in-differences specification comparing the differential
impact of salty floods on farmers’ beliefs about soil salinity on their plots. Column (1) presents regression
results of the impact of floods alone, controlling for the machine learning generated flood risk measure.
Columns (2) and (3) estimate the full difference-in-differences specification, where saltier is measured in
terms of standard deviations. Column (2) is my preferred specification; column (3) does not control for
baseline flood risk. All standard errors are clustered at the village level. Regressions exclude farmers
who failed the baseline beliefs elicitation comprehension checks.
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Table A.9: Subtle Shift: Salinity Intrusion’s Impact on Soil Salinity Beliefs

(1) (2)
Sea Level Rise 0.274 0.383

(0.344) (0.470)

Ocean Salinity -1.169∗∗∗ -1.100∗∗
(0.348) (0.433)

Sea Level Rise × Ocean Salinity 0.00356 -0.300
(0.163) (0.217)

Closer to Ocean 0.413∗
(0.244)

Closer to Ocean × Sea Level Rise 0.226
(0.439)

Closer to Ocean × Ocean Salinity -0.529
(0.400)

Closer to Ocean × Sea Level Rise × Ocean Salinity 0.194
(0.190)

Constant 4.591∗∗∗ 4.791∗∗∗
(0.204) (0.270)

Observations 2068 2068
Clusters 250 250
Control Mean 4.617 4.617

Note: Table A.9 presents results from the triple difference-in-differences specification comparing the dif-
ferential impact of being closer to the coast while being exposed to relatively higher sea levels and ocean
salinity on farmers’ beliefs about the amount of salt in their soil. Column (1) presents regression results
of a difference-in-difference specification ignoring distance to the coast and just isolating the shocks to sea
level elevation and ocean salinity. Column (2)—my preferred specification—additionally interacts with
distance to the coast. All standard errors are clustered at the village level. Regressions exclude farmers
who failed the baseline beliefs elicitation comprehension checks. All variables are measured in terms of
standard deviations.
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B Environmental Data

B.1 Estimating Flood Risk

This section describes the approach I use to calculate true flood risk for each union.
Perhaps the simplest measure is simply the historical incidence of flooding in each polygon,
which I calculate using the new measure of flooding that I derived from remote sensing data.
The primary challenge with relying on that measure is that idiosyncratic factors may have
caused a flood in one area and not the other in recent years, yet both places could still
have the same fundamental flood risk in the future. The goal therefore is to use existing
data to identify sets of locations where floods might happen using an objective scale. In
addition to the simple historical exposure rates, I consider three separate types of indicators.
First, I calculate “traditional” measures of exposure based on standard hydrological models.
Second, I use my new measure of flood exposure derived from satellites to build a measure
of flood risk. Third, I take a model-free approach by linking other geographic data with that
historical measure and using supervised machine-learning to generate a flood risk measure.

For the first set, I defer to the government’s estimates and calculate flood hazard
and proneness from shapefiles produced by the Bangladesh Agricultural Research Coun-
cil (BARC). When controlling for this set of flood risk, I include fixed effects for each of
the government’s flood proneness categories and quadratic polynomials of the flood hazard
measure.

For the second, I calculate—for each union—the average flood exposure of its neighbors.
The intuition behind this method is that neighboring areas likely experience very similar
flood risk, and thus by calculating the average incidence among them, I can proxy for a
given union’s own flooding likelihood without giving undue influence to one place’s own
historical experience. I calculate two measures: one that includes the primary union’s own
past incidence in addition to its neighbors, and one that does not.

Finally, I calculate a predicted measure of flood risk using machine learning to dictate
how underlying geographic features impact flood risk. This approach has the advantage of
not relying on hydrological models, which can often be quite sensitive in their predictions,
while also allowing me to let the data tell me which unions are comparable with one another.
To flexibly estimate predicted flood, I train an algorithm to predict true flood experience
based on geographic characteristics. First, I calculate the daily flood hazard rate based on
the full panel of flooding experience. To account for the long tail of the distribution, I assign
each union its percentile rank in this distribution of hazard rates, though results are broadly
similar using the raw value. This variable constitutes the main flood risk outcome that I
predict in the algorithm. As inputs, I calculate the mean and standard deviation of elevation
in each union, binned latitude and longitude at the tenth of a degree level, the length of
major rivers through that union, average drainage characteristics and flooding depth from
BARC shapefiles, and each of the flood measures from the first set described in the previous
paragraph. I then randomly split the sample of 5,158 unions into a training dataset and
a testing dataset, with 20 percent reserved for the latter. Finally, I train a random forest
algorithm to predict flood rank using the full set of inputs. Applying this model out of
sample to the hold-out unions, I can explain 0.71 percent of the variation in true historical
incidence ranking using my predicted measure. The fact that this R2 is less than one can be
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viewed as an advantage in this case because I can always control for the true past experience.
This measure, by contrast, captures a data-driven notion of similarity.

B.2 Soil Salinity

I focus on two complementary data sources to measure soil salinity.

Figure B.1: Salinity Measurement

Note: Figure B.1 shows an image of soil
salinity being collected by enumerators.

Direct Agronomic Data Collection First, enu-
merators took soil salinity measurements on the ran-
domly selected plot using handheld soil sensors that
measure electrical conductivity, with a range from 0
to 10 dS/m. For each plot, measurements were taken
in three places, at least six inches from the edge of
the soil, three feet apart from one another. I cal-
culate the average reading from these three samples
to measure each plots salinity on a given day. For
repeat measurements, enumerators use photographs,
GPS readings, and the farmer’s location to return to
the same point in each plot and collect follow-up data.
Figure B.1 shows an image from the baseline survey
of enumerators using the soil sensors to measure salin-
ity. Enumerators used Yieryi EC-98361 Digital Soil
EC Meter Testers with a resolution of 0.01 ms/cm.

Salinity evolves over the course of the dry season,
but due to budget restrictions, high-frequency salin-
ity measurement was not possible. Instead, enumer-
ators took salinity measurements twice: first during
the baseline survey, and second during a midline visit
during the season.69 Based on multiple photos and
detailed GPS coordinates taken during each measure-
ment, I verify that the enumerators indeed returned not only to the same plot but to the same
point in each plot. Ideally, measurements would be taken continually during the growing
season to understand average exposure. Given budget restrictions, the midline was timed to
maximize predictive power of the average soil salinity from November through April. Most of
the baseline survey measurements took place in November. Based on data from the SRDI’s
soil monitoring sites described further below, the additional month that maximizes predic-
tive power in a simple linear regression is March, with an R2 of .901. The second round of
measurements was timed so as to collect as much data as possible in March, subject to con-
straints around the timing of Ramadan and the geographic scope required of enumerators,
with some data collected in the second-half of February.

To convert these snapshots of salinity into a measure of seasonal exposure, I estimate
69 Additionally, enumerators measured salinity from a random sample of 30 villages during a third visit at
the end of May and beginning of June. These data confirm the trends shown from the second-round of
measurements.
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the link between seasonal average and the relevant calendar months using the 142 full sea-
sons of salinity from the SRDI data and apply this relationship out of sample to the soil
measurements I collect. For a small number of households, enumerators could not col-
lect salinity measurements during one of the two visits: 164 during the baseline (largely
due to flooding making the plot inaccessible) and 31 during the midline (typically be-
cause of migration or other household unavailability). For these households, I replace the
missing measurement with the mean village value prior to predicting seasonal salinity ex-
posure; if the entire village lacks the measurement, then I use the mean for the upazila.

Figure B.2: Salinity Sensor
Lab Experiments

Note: Figure B.2 shows an im-
age of one of the soil salin-
ity sensors used in this study
being tested in a solution of
distilled water and NaCl.

The gold-standard method for measuring soil salinity re-
quires taking soil samples to a lab for analysis—prohibitively
expensive at the scale of this study. This raises an important
concern with the handheld sensors used to measure salinity
in this sample of farmers: any systematic bias in these sensors
would distort the results. In particular—given that the salinity
levels I measure tend to be systematically lower than historical
salinity levels measured by the SRDI—one might worry that
my sensors underestimate the truth, especially at higher salt
levels. To test the scope of this potential issue, I conduct lab-
oratory tests with the handheld sensors used in the study and
compare the results to other more expensive sensors available
in the market. This approach features the advantage of be-
ing able to know the ground truth: by carefully measuring out
grams of NaCl and mixing it with a solution of distilled water,
I can calculate the exact electrical conductivity of the solution
and compare the measured values to this ground truth.70 Of
course, these sensors are designed for direct soil measurement
as opposed to this controlled solution, and thus discrepancies
could indicate differences in the type of sample instead of in-
dicating errors with the sensor.

I test for differences in measurement across sensors and
salinity levels in these lab experiments. I conduct the evalua-
tions in 250 milliliter solutions featuring grams of NaCl ranging from 0 to 1.5 in increments
of .1 grams, equivalent to a dS/M range of 0 to 10.27. I compare three sensors used in the
field, two sensors of the same model but brand new (in case the sensors change over time or
by use), and two brand new high-end models. I randomized the order in which each sensor
was placed in the solution, and include fixed effects for this order. I first document that
among the high-end models—which are much too expensive to feasibly be used at scale—the
salinity sensors nevertheless tend to overestimate the objective salinity level by an average
value of (0.73 dS/m).71 The sensors I use during the midline overestimate by a smaller
amount, with a mean of 0.69 dS/m. To help put this magnitude in perspective, the within
70 Specifically, the gram molecular weight (GMW) of sodium (Na) is 22.99, the GMW of chloride is 33.45,
so I calculate the true conductivity as grams of NaCL divided by 58.44 times 1000 divided by millileters of
distilled water.
71 One of the high-end models top-codes at 2.00 dS/m, and thus I exclude all measures above that point for
that model.
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plot, within day standard deviation in measured salinity in my sample is 0.15 ds/M on aver-
age. In a regression specification allowing for a differential linear bias in true salinity, I find
no statistically significant evidence that the cheaper sensors I use perform differently than
the more expensive ones. The fact that the overall discrepancy suggests that if anything,
the sensors I used overestimate salinity, contrary to what would be expected given the low
levels I observe in the field compared to historical trends.

Figure B.3: Historical Boro Season Salinity
from Soil Measurement Sites
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Note: Figure B.3 plots salinity data from soil moni-
toring sites that I acquired from the Bangladesh
Soil Research Development Institute. To calcu-
late annual soil salinity, I take the average value
between November of the previous calendar year
and April, with each month given equal weight. I
arrange monitoring sites by their average salinity
value across all available years.

Government Salinity Panel Second,
SRDI provided measurements from monthly
soil samples from 11 monitoring sites in and
around Khulna.72 Most of these samples
date back to 2004. Figure B.3 visualizes the
average salinity value during the Boro season
for these sites over time. The graph illus-
trates the considerable variation both over
time and across places in soil salinity. Figure
B.4 presents the simple average time series
in annual salinity among a constant sample
of stations. Salt levels also exhibit signifi-
cant variation within the year in predictable
seasonal patterns. Figure B.5 plots this sea-
sonal variation using data from the govern-
ment’s soil stations.

The government’s data provide reassur-
ance that the patterns in seasonal salin-
ity I document are true. Figures B.6 and
B.7 show that consistent with my readings,
February and March of the 2022-23 season were abnormally low. This is particularly sur-
prising given the low amounts of rainfall, but the results are striking even in this relatively
underpowered analysis.

B.3 Water Salinity

To measure the local water salinity, I combine two data sources.
First, I obtain monthly water salinity levels from 133 river station monitoring sites main-

tained by the Bangladesh Water Development Board (BWDB). Figure B.10a maps these
stations, which I assign to unions based on the closest centroid. I acquire all available data
since 2011, yielding 5,955 observations total. For each station and month, I observe the
maximum, minimum, and average salinity at high tide. Figure B.8 plots the average values
across month, illustrating substantial seasonal variation.

Second, I estimate exposure to ocean salinity levels every day since January 1st, 2002 by
first calculating surface sea water salinity from the Hybrid Coordinate Ocean Model (HY-
72 A settlement was built on one of these sites during the 2022-23 season, so I only have data on 10 for the
most recent months.
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Figure B.4: Trends in Annual Soil Salinity—SRDI Soil Stations (Constant Sample)

Figure B.5: Seasonal Patterns in Soil Salinity—SRDI Soil Stations

Note: Figure B.5 plots the average soil level across the 11 locations monitored monthly by the Bangladesh
government’s Soil Resource Development Institute. Seven of the stations have data for most months since
2004; four new ones were added in 2018. Figure B.4 takes the constant sample of these stations with
data available for all twelve months of each year, and plots the average salinity for all available years.

86



Figure B.6: 2022-23 Soil Salinity Anomaly: SRDI Soil Sites Raw Data

Figure B.7: 2022-23 Soil Salinity Anomaly: SRDI Soil Sites Raw Data

Note: Figures B.6 and B.7 use data for the 10 sites for which I have historical data from the SRDI to
assess the extent to which 2022-23 exhibit abnormal soil salinity patterns. Figure B.6 plots the raw
means of the 2022-23 season against the historical average by calendar month across all sites. Figure B.7
plots coefficients from a regression of calendar month interacted with a dummy for the 2022-23 season
controlling for site and calendar month fixed effects, clustering standard errors by site.87



COM) along 10 kilometer-wide grids off the Bangladeshi coast (Cummings and Smedstad,
2013). Figure B.10b illustrates the coastal grids over which I calculate daily ocean salinity
from this remote sensing data in red, and the nearest straight line distance to unions in blue.

The BWDB does not collect data during all months of the year—and in particular, not
during the critical flooding times of the monsoon season. To overcome this missing data
challenge, I train a supervised machine learning algorithm to predict river salinity using
predictors constructed from ocean salinity measurements, which are available year-round. I
first construct a vector of predictors from the ocean salinity data. Following Guimbeau et al.
(2023), I identify the five closest coastal polygons to each BWDB station, and then construct
five month leads and lags of mean and maximum ocean salinity from those five polygons. I
include features for both the unweighted salinity, weighted according to the inverse squared
distance of the five closest locations, and a final set multiplying this weighted version by the
minimum distance from the salinity station to the coast. Using a random forest to predict
the truth, I can explain 82.41 percent of the variation in a 20 percent hold-out testing sample.

B.4 Sea-Level Rise

To measure village-level exposure to sea-level rise, I again use data from the Hybrid
Coordinate Ocean Model (HYCOM) along 10 kilometer-wide grids off the Bangladeshi coast
(Cummings and Smedstad, 2013). I calculate the sea surface elevation anomaly relative to
the modeled elevation mean. Figure B.11 plots the evolution of average elevation across these
polygons over time, with darker colors denoting earlier years, to illustrate the variation I use
in the natural experiments.
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Figure B.8: River Station Salinity Data

Figure B.9: Ocean Salinity Over Time

Note: Figure B.8 plots the average maximum, minimum, and mean salinity at high tide across river stations
by calendar month using the data I obtained from the Bangladesh Water Development Board. Figure
B.9 plots average ocean salinity across polygons for three sample years over the course of the calendar
year.
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Figure B.10: Mapping Water Salinity Sources

(a) BWDB River Salinity Stations
(b) Linking Unions to Coastal
Grids

Figure B.11: Rising Sea Levels in Bangladesh
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Note: Figure B.10a maps the BWDB river salinity stations from which I obtain data. Figure B.10b
illustrates the ways I link unions to coastal grids via the closest cell. Figure B.11 plots how sea levels
have risen along the coast of Bangladesh based on my calculations from satellite data of the HYCOM
(Cummings and Smedstad, 2013), averaging across the 10 kilometer-wide grids I have created off the
Bangladeshi coast.
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C Farmer Perceptions Survey

C.1 Sampling

Figure C.1: Map of Surveyed Unions

Note: Figure C.1 presents a map of
Khulna division with blue denoting
unions included in the survey.

Union Sampling The survey was conducted across
250 unions in the Khulna division of Bangladesh.
From the 642 unions in the Global Administrative
Areas (2018) data, I exclude 32 urban areas and then
select nine unions from which I have government salin-
ity station data, 37 unions with water stations from
the Bangladesh Water Development Board, 48 unions
that are also included in the Bangladesh Integrated
Household Survey sampling frame, and 121 unions
that are also included in the 2016-2017 Bangladesh
Labor Force Participation Survey sampling frame.
This yields 185 unique unions. Both the Bangladesh
Integrated Household Survey and the Bangladesh La-
bor Force Participation Survey were designed to be
representative, and just 29 of the 185 initially selected
unions fall outside of both of those survey’s sampling
frames as exclusively part of the government salinity
or water stations. Then, I randomly sort the remain-
ing unions, and choose the next 65.73

Farmer Sampling Enumerators visited each union
and did an initial listing of 50 households who were
planning on harvesting rice during the upcoming Boro
season and made the primary agricultural decisions
on their land. In almost all unions, this goal of 50
households was achieved and typically within a single
village. From this initial list, farmers were randomly
ordered to be selected for an interview. Initially, 10
households were selected per union, though this num-
ber was revised down to nine given survey length con-
cerns after the first week. On average, 9.1 farmers
were surveyed in each union. Before a household was deemed unavailable and a replace-
ment household was selected from the randomized listing order, enumerators attempted to
contact them multiple times over multiple days via their phone number collected during the
73 The original sampled list included 250 unions. After enumerators attempted to conduct the listing exercise,
they could not find a sufficient number of Boro rice farmers in either Nalian Range or Satkhira Range,
reducing the total sample to 248, which was the pre-registered sample size. During the course of the baseline
survey, it was discovered that in two additional unions, farmers had a different interpretation of the term
“Boro” and did not harvest rice during the relevant season, reducing the sample size to 246. After additional
funding was received partway through data collection, however, four new replacement unions were added to
bring the total back to 250, following the initial randomization order.
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Figure C.2: Data Collection Timeline

Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul.

2022 2023

Baseline Survey
Seed RCT

Soil Salinity
Measurement

Soil Salinity
Measurement

Endline Survey
Info RCT

Planting Harvesting

Note: Figure C.2 shows the timeline of data collection activities along with farmers’ typical planting and
harvest times.

listing. Of the endline respondents, 97.07 percent were also interviewed during the baseline;
in the small number of cases when the baseline respondent was unavailable, another person
from the household who makes decisions about farming was interviewed. Among the 66
households successfully interviewed in the endline but for which the primary respondent was
unavailable, 28 of the baseline respondents had migrated, six had passed away, and 32 had
another conflict.

Timeline Data collection spanned from Fall 2022 through Summer 2023, as pictured in
Appendix Figure C.2. Villages were assigned to enumerators based on location to minimize
staff travel time. Within enumerator, the order of villages was randomized for both the
baseline and endline surveys. Enumerators typically completed three surveys a day, spending
three days in each village.

C.2 Variable Construction

Please visit the following links to view the complete survey instruments: Baseline (En-
glish translation), Baseline (Bangla translation), Endline (English translation), and Endline
(Bangla). The plot-specific questions and the salinity measurements took place on a plot
selected at random with a probability proportional to the plot size.

Demographics I construct a continuous years of education measure based on the categor-
ical answers given to the education question as follows: no schooling or informal education
only (0), class 5 or below (5), class 8 or below (8), SSC/Dakhil or below (10), HSC/Alim
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or below (12), Degree (12), Graduate (16), Technical/Vocational education (16), and Post-
graduate (18).

Environmental Knowledge Salinity: Respondents were first asked, “Does the amount
of salt in the soil change throughout the year?” Those who answered yes were then asked in
which month the salt in the soil was highest and lowest. Based off of monthly data from the
Bangladesh Soil Resource Development Institute’s soil stations in Khulna and nearby areas,
I classify correct answers generously: any month between mid-March to mid-June (in the
Bangla calendar) for the peak and any month between mid-July and mid-November for the
trough.

Environmental Beliefs Salinity: To elicit beliefs about soil salinity, I ask farmers to
distribute buttons across the picture shown in Figure C.3a. I first introduce this image by
telling farmers, “This image shows pictures of rice plants at the end of the season, once
they are fully grown. They are arranged from the best growing to the worst growing. The
smallest ones grew the worst. The biggest plants grew the best. Plant number 1 is the least
healthy, and plant number 7 is the most healthy.” To ensure that farmers do not simply
misinterpret the question as asking about last year’s or next year’s crops, I next ask, “First,
think about last year. Which of these pictures best matches the plants that grew on your
plot last year? I would now like to know how you think your own crops will fare this year.
Think about the end of the season. What are your guesses about what your grown plant will
look like on your plot? Place the highest number of buttons on the image that best matches
your guess. Remember, plant 7 is the healthiest and plant 1 is the least healthy.” Then, I
introduce the salinity study specifically by instructing farmers, “This is not a picture of your
own plant, it is taken from a previous study. Researchers have grown rice seedlings under
different conditions. This rice variety is not specially adapted for saline soils. Instructions:
Point to picture that has the biggest plant. This picture shows the seed grown in soil with
the least amount of salt. Instructions: Point to picture that has the smallest plant. This
picture shows the seed grown in soil with the most amount of salt. Instructions: Point to
the pictures in the middle. These pictures show seeds grown in increasing amounts of salt,
from largest to smallest. Do you have any questions about these plants?” After answering
any lingering questions, the main belief elicitation question asks farmers, “This photo comes
from researchers who planted rice that is not saline tolerant in different soils with different
amounts of salt. If they used your soil from your plotplot, which of these pictures do you
think would look most like the plant at the end of the season? We are asking this question
because we are trying to understand how much salt you think is in your soil. You should
assume that the researchers copy all aspects of your soil, such as the water and fertilizers
you use over the season and the weather on your plot. Please place more buttons on the
pictures that you think are more likely.” In follow up questions, I elicit beliefs about soil
conditions five years in the past and in the future.

The image from Figure C.3a comes from the field experiments testing salinity’s impact
on rice yield from Grattan et al. (2002). Based on the growing conditions from that paper,
I convert beliefs into average salinity perceptions based on equation 11, where ski denoting
the number of buttons places on the kth rice plant, where the healthiest plant is 7 and the
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Figure C.3: Belief Elicitation Visual Aids

(a) Soil Salinity Image (b) Flooding Image

(c) Monsoon Intensity Image—Baseline (d) Monsoon Intensity Image—Endline

Note: Figure C.3 shows English versions of the the image used to elicit beliefs in the survey. Figure C.3a
shows the image for measuring expectations about soil salinity among farmers, which comes from field
experiments run to test the impact of salinity on rice yield from Grattan et al. (2002). Figure C.3b shows
the image for flooding. Figures C.3c and C.3d show the images used in the monsoon intensity elicitation
during the baseline and endline, respectively.

least healthy is 1. This equation incorporates both the conversion from the plant health
to the seasonal average of field water salinity and the translation of field water salinity to
salinity from the top three inches of soil. In both steps, Grattan et al. (2002) find strong
linear relationships with high R2.

Expected Salinityi = ŝi = 1.17 ∗

(∑7
i=1(.3 + 1.95(7− k))ski

10

)
+ 1.2 (11)

Due to the discrete nature of the button elicitation method, farmers cannot express
beliefs that span the complete support of possible salinity expectations. To account for this
measurement error, I adjust beliefs under the following structural assumption. This ensures
that any bunching I observe in the data is not an artifact of the elicitation method. Let sr
denote a possible salinity expectation that can be expressed using buttons, where r ranks
values from smallest to largest. The key assumption I make is that the true expected belief s∗i
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equals their reported value ŝi = sr(i) plus an adjustment drawn from a uniform distribution
spanning between ranks, following equation 12, yielding the final belief in equation 13.

µi ∼ U

(
sr(i)−1 − sr(i)

2
,
sr(i)+1 − sr(i)

2

)
(12)

s∗i = ŝi + µi (13)

One limitation of this measurement approach is bottom-coding from the Grattan et al. (2002)
experiments. Indeed, I find soil salinity levels below the lowest amount considered in that
study on several hundred plots. To account for this, when comparing beliefs to the truth, I
also bottom-code the true salinity level at the same level as these beliefs.

Flooding Beliefs The same random half of farmers who answered beliefs questions about
precipitation also provided their expectations about flood risk by placing buttons on Figure
C.3b. To ensure that the categories remained mutually exclusive, enumerators instructed
respondents to consider the total number of days in the case of multiple floods occurring.
Farmers first provide predictions about the next 12 months, and subsequently about the
next five years. As a complementary measure and an attempt to account for the difficulty
in articulating small probabilities with the button method, I additionally ask farmers, “How
many years do you think it would take for a [one-day/three-day/week-long/month-long] flood
to happen in this village?” I winsorize these at the 99th percentile I convert these to a hazard
rate by calculating the inverse.

To construct an index of flooding beliefs, I calculate the expected number of days of
flooding next year and in the next five years, hazard rates from the questions of the form
“How many years...”, and farmers answers to the questions about whether flooding risk
increased the past 10 years, will increase the next 10 years, and the order of those two
questions. I combine these measures following the procedure in Kling et al. (2007), and then
standardize the resulting measure based on the control group mean and standard deviation,
where here the control group excludes those who randomly received the flood information.
To analyze the information treatment, I construct this same index only using the hazard
rate questions which were asked after enumerators potentially provided the information to
respondents.

Rainfall Beliefs To measure farmers’ perceptions of rainfall during the monsoon season,
enumerators asked farmers to place buttons across the image in Figure C.3c for the random
half of respondents asked about rainfall during the baseline survey, and across the image
in Figure C.3d for the other half asked during the endline. This adjustment was made to
address concerns about bottom-coded answers. Enumerators define a rainy day to farmers
as one on which it rained for at least an hour with normal size drops. This is consistent with
the U.S. Geological Survey definition. I ask farmers about how much it rained during the six
months in the Bengali calendar corresponding to mid-May through mid-October. Farmers
were asked to place buttons to indicate, for every two weeks during this period, on how many
days they expect or recall that it rained, depending on whether the question was about the
past or the future.
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To convert these responses into a prediction, I assign values to buckets as follows: less
than 8 days (7.5 days), less than 10 days (9.5 days), more than 12 days (12.5 days), and all
bins k-k + 1 days (k + .5 days).

Perceived Returns to Salinity-Tolerant Seeds To measure beliefs about the returns
to salinity-tolerant seeds, I first ask farmers to estimate the amount of rice they expect to
harvest from the target survey plot. Then, I ask them by how much they expect this harvest
to change if they switched to a salinity-tolerant seed. If they already intend to plant a
salinity-tolerant seed, then I instead ask about switching to a non-salinity tolerant seed. In
all questions, I use the visual belief elicitation method described above that uses buttons to
elicit probabilistic beliefs. I simply use the mean return scaled by the total mean expected
harvest in the analysis of the returns to salinity-tolerant seeds.

Agricultural Profits Capturing agricultural profits presents a variety of challenges in this
setting. I therefore calculate several complementary measures, each with its own advantages
and drawbacks.

Separately from farmers’ self-reported profits, I calculate a measure of greenness based
on satellite data. First, I take the average latitude and longitude of each farmers’ plots
from the salinity sensor readings. Second, I construct a circle around this point of .0005
degrees, or approximately 55 meters. Note that because plots vary in size and the soil
salt measurements did not occur in the middle of the plot, this step certainly generates
measurement error, though it should be independent of treatment status. Third, I calculate
a normalized difference vegetation index (NDVI) using remote sensing data from the Sentinel-
2 satellite. I use the Harmonized MultiSpectral Instrument Level 2-A series made available
on Google Earth Engine. From the endline survey, I take the harvest week of the Boro crop
and calculate average greenness in the three weeks leading up to that date.74

I compile every satellite image between February 15th and March 15th 2023. I calculate the
average value of the red and near infra-red (NIR) wavelengths for each image, excluding any
observations with any cloud coverage. Finally, I calculate the NDVI on each day according
to equation 14 and take the average value across this time period for each plot.

enhanced vegetation index

NDV Ii =
NIR−RED

NIR +RED
(14)

EV I =
2.5 ∗ (NIR−RED)

NIR + 6 ∗RED − 7.5 ∗BLUE + 1
(15)

Agricultural Issues: What Comes to Mind? The first question asked to respon-
dents after the consent form was: “What are the biggest issues that you face in cultivating
74 I use responses from the 98.33 percent of farmers who report a date between the second half of February
and the first half of June. For the others (including those who did not harvest in Boro), I assign them the
modal date from their treatment status by village response. There is no difference between treatment and
control group in reporting an answer within the relevant date (p-value=0.922). In one village, all harvest
dates are missing, and I exclude respondents from this village from this analysis.
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Boro rice?” I recorded the audio of farmers’ responses to this question, and then coded up
their answers according to the issues mentioned by each farmer. I construct 13 categories,
in addition to an other category: Pests/Disease, Salinity, Input prices, Non-salinity water
problems, Input shortages, Seed issues, Rice sale price, Non-salinity soil problems, Other
rice plant health problems, Farmers’ own health, Floods, Rain/droughts, and Temperature.

C.3 Flood Insurance Details

This section provides details on the elicitation of willingness-to-pay for flood insurance.
Enumerators explained the hypothetical contracts to farmers using the following script: “In
some places, there are insurance contracts for bad weather or natural disasters. For example,
there may be an insurance contract for the amount of rain. In that case, farmers like you
will pay some money to the insurance company at the beginning of the season. If there is
not enough rain in that season, the insurance company will refund the money paid to the
farmers at the beginning of the season with interest. And if there is enough rain in the
season, then the insurance company will not pay any money at the end of the season. I’m
now going to ask you about a hypothetical insurance contract. Suppose there is an insurance
company offering insurance for flooding. You should imagine that the insurance company is
extremely trustworthy. If you accept the contract, that means that every month, you would
have to pay a fixed amount to that company. If there is a flood that occurs on your land,
then they will pay you a large amount of money. If there is no flood, then you do not receive
any money. Does this make sense?”

Figure C.4: Insurance Contract Visual Aid

Note: Figure C.4 shows the visual aid used by
enumerators to help explain weather insurance to
farmers.

Then, enumerators point to the relevant
parts of the visual aid in Figure C.4 and read
the following, where the randomized values
for [Fee] and [Payout] were automatically
filled in75: “Now let’s see an example. The
insurance company offers you a contract for
[Fee] Taka per month. If there is a flood,
then the company pays you [Payout] Taka.
Let’s walk through two scenarios. First,
imagine that you do not buy the contract.
That is shown by the top row. Then each
month, you do not have to pay anything to
any company. If no flood occurs, then you
never receive any payment from the com-
pany and you never have to pay anything.
However, if there is a flood, then that might damage your house or your crops. In that case,
you would also not receive anything from the company, but you might have damages that
might cost you some money. Now, imagine that you do buy the contract. That is shown by
the bottom row. Then each month, you have to pay [Fee] taka. If there is no flood, then you
do not get paid anything by the company. If there is a flood, it might damage your house
75 The example fee has no predictive power for explaining farmers’ willingness-to-pay in the price list that
follows.
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or your crops. But the company also pays you [Payout] Taka. Of course, it is hard to know
in advance if or when a flood will occur.”

To check farmers’ comprehension of this type of contract, enumerators asked two ques-
tions: “Just to make sure this is clear, I’m going to ask you some questions about these
scenarios. If you do not buy the insurance, how much do you get paid if there is a flood? If
you do buy the insurance, how much do you get paid if there is a flood?”

Finally, prior to the elicitation, enumerators reiterated the format of the contract: “It is
important to remember that it is hard to predict if and when a flood might occur. That
means that if you buy insurance, the number of months you have to pay the fee before a
flood occurs could be small, could be large, or a flood might never occur. Does that make
sense?” Then, enumerators implemented the price list to elicit demand using the same value
of [Payout] as the example. The format of the questions mirrored the BDM procedure
conducted earlier in the survey.
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D Additional Data Sources

D.1 New Seed Database

Rice farmers in Bangladesh plant a large number of different seeds, many of which are
local varieties. Unfortunately, no systematic data includes information on these different
varieties. To overcome this issue, I construct a new database of seed characteristics by
compiling data from several different sources. I take records from the Digital Herbarium of
Crop Plants from the Department of Crop Botany at Bangabandhu Sheikh Mujibur Rah-
man Agricultural University, which itself aggregates information from the seed developers.
I supplement these data with information from three government sources: the Bangladesh
Ministry of Agriculture Bangladesh Agricultural Research Council’s Agri-Advisory Portal,
the Seed Certification Agency, and the Bangladesh Rice Research Institute. I add additional
information on the growth duration of each seed from the Food and Agriculture Organization
on Bangladesh. I execute online searches for each variety and, in some cases, call the seed
importers directly to collect additional information.76 Finally, local varieties constitute an
important share of planted seeds in this setting, yet official records detailing their charac-
teristics do not exist. I use phone surveys with four seed dealers from across the Khulna
division in an attempt to fill in this data gap. I focus on salinity tolerance status, the most
important seed characteristic for my analysis.77

The complete set of seeds for which I attempt to find data spans 330 different varieties,
of which I classify 17 as salinity tolerant. As a benchmark, I classify 42 as resistant to at
least one pest. Table D.1 presents information on how other seed characteristics vary by
whether the variety is tolerant to saline soil. Salinity-tolerant seeds tend to produce smaller
yields and enter the market more recently.
76 The Hera-2 seed is somewhat salinity-tolerant, but the original Hera seed is not. However, because
farmers sometimes use the term “Hera” to refer to either, I defer to their judgment on a case-by-case basis
as to whether their variety of “Hera” is indeed resistant to high salinity levels.
77 The information from seed dealers sometimes contradicts the official government records or one another
for this feature, and thus I only defer to the seed dealers’ classification in the case of local varieties for which
no official source exists, and when at least two dealers report the same seed being saline tolerant.

Table D.1: Seed Characteristics by Salinity Tolerance Status

(1) (2) (3) (4)
Boro Yield

(Tons/Hectare)
Plant Height

(cm.)
Release
Year

Growth Duration
(days)

Salinity Resistant -1.024∗ -1.841 14.36∗∗∗ 4.508
(0.536) (3.070) (2.969) (3.302)

Non-Resistant Mean 6.689 109.832 1997.891 135.824
Observations 64 119 147 139
Note: Table D.1 presents ordinary least squares regressions of key seed characteristics against each vari-

ety’s salinity tolerance, based on the new database I assemble. Observations vary depending on what
information I am able to track down for each seed.
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D.2 Bangladesh Climate Change Adaptation Survey

This section describes the cleaning and definitions of relevant variables from the
Bangladesh Climate Change Adaptation Survey. I focus on two primary questions asked
in the second round to 805 households. First, respondents were asked, “Have you noticed
any changes in the average rainfall or the number of rainfall days over the last 20 years?”
I construct a variable indicating whether respondents answered that rainfall had decreased
to this question. Second, they were asked, “Have you noticed any long term changes in
rainfall variability over the last 20 years? If yes, what changes have you noticed?” I classify
responses to this question under six categories: longer droughts, an increase in floods, more
erratic rainfall, later rainfall, earlier rainfall, and heavier rainfall.

E Conceptual Framework Appendix

E.1 Proofs of Theoretical Results

This section provides a formal treatment of the results from Section 3. To make this
section self-contained, I begin by repeating the key notation from the set-up as discussed in
the main text and then derive the main predictions.

Set-Up Farmer grows rice in two periods, t ∈ {1, 2}. Output in period t is given by the
binary indicator yt ∈ {0, 1}, where yt = 0 denotes low harvest, and yt = 1 denotes high
harvest. Harvest is subject to a random productivity shock ξ that can be either negative
(ξ = −1), positive (ξ = 1), or neutral (ξ = 0). I assume productivity shocks are distributed
symmetrically with mean zero such that the positive and negative shocks occur with equal,
positive probability denoted by ρ > 0 and that neutral shocks occur with positive probability
such that ρ < .5. In the first period, farmers make no decisions about inputs and plant the
standard seed. In the second period, salinity tolerant seeds are introduced, and farmers
decide whether to plant salinity tolerant seed or plant the standard seed. This decision is
given by the binary indicator dt ∈ {0, 1}. Planting a standard seed is given by dt = 0,
where d1 = 0 by default because salinity tolerant seeds are not available in the first period.
In the second period, farmers may plant a salinity tolerant seed, denoted by d2 = 1. Seed
choice costs c(dt), where I normalize such that planting a non-salinity tolerant seed is free
c(dt = 0) = 0. I assume planting a salinity tolerant seed costs c(dt = 1) > 0, where c(dt = 1)
is positive yet small to capture the notion that salinity tolerant seeds perform relatively better
in high salt environments yet relatively worse than standard seeds amid low salinity. Two
independent and unchanging environmental conditions denoted by the set {S,B} can impact
harvest, where S is the soil salinity and B is blast, an important fungus threatening rice.
I use lower case letters to denote the true, binary environmental states in these respective
domains, given by s ∈ {0, 1}, where s = 0 denotes low salt levels and s = 1 denotes high salt
levels, and by b ∈ {0, 1}, where b = 0 denotes no blast and b = 1 denotes the presence of
blast. I assume the agricultural production function follows a particular, simple functional
form given by Equation 16. The maximization and minimization expressions ensure the
binary support of output yt ∈ {0, 1}. Planting salinity tolerant seeds dt = 1 mitigates the
damage from soil with high salt content (s = 1).
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yt(s, b, dt) = max
(
min

(
1− (s− dt)

2 − b+ ξ, 1
)
, 0
)

(16)

I assume farmers cannot directly observe the environmental states. As a result, farmers
are uncertain about how their decision d2 impacts their output y2 entering the second period.
This uncertainty is captured by their prior over the states of soil salinity and blast. I use ·̂
and lower case letters to denote beliefs, such that ŝt denotes a farmer’s belief entering period
t about the probability that true salinity levels are high ŝt = P (s = 1), and b̂t denotes a
farmer’s belief in period t about the probability that blast is present b̂t = P (b = 1). I assume
that farmers use Bayes’ rule to learn about these unobserved environmental conditions by
updating using the harvest in period 1. Risk-neutral farmers choose seeds to maximize
output in period 2 given their beliefs, as shown in Equation 17.

U = max
d2

E
[
y2(ŝ2, b̂2, d2)− c(d2)

]
(17)

Finally, I define the default domain to be the environmental domain E ∈ {S,B} corre-
sponding to the most likely threat ê = max(ŝ, b̂).

Learning About the Environment To characterize farmers’ posterior beliefs entering
the second period, I simply apply Bayes’ rule. First, consider the case shown in Equation 18
of updating about the likelihood of high salinity after observing a bad harvest.

ŝ2 = P (s = 1|y1 = 0) =
P (s1)P (y1 = 0|s = 1)

P (y1 = 0)
(18)

I now derive each of these components. The first term is simply farmers’ priors about salinity
P (s1) = ŝ1. The second and third terms can be calculated using the agricultural production
function, as shown in Equations 19 and 20, respectively.

P (y1 = 0|s = 1) = b̂1 + (1− b̂1)(1− ρ) (19)

P (y1 = 0) = b̂1ŝ1 + ŝ1(1− b̂1)(1− ρ) + b̂1(1− ŝ1)(1− ρ) + (1− b̂1)(1− ŝ1)ρ (20)

Substituting these expressions into Equation 18 gives Equation 21.

ŝ2 =
ŝ1b̂1 + ŝ1(1− b̂1)(1− ρ)

b̂1ŝ1 + ŝ1(1− b̂1)(1− ρ) + b̂1(1− ŝ1)(1− ρ) + (1− b̂1)(1− ŝ1)ρ
(21)

This expression can be simplified to Equation 22.

ŝ2 =
ŝ1 − ρŝ1 + ρb̂1ŝ1

b̂1 + ŝ1 + ρ+ 3ρb̂1ŝ1 − b̂1ŝ1 − 2ρb̂1 − 2ρŝ1
(22)

The difference between posterior and prior beliefs about salinity is then given by Equation
23.

ŝ2 − ŝ1 =
ŝ1 − 2ρŝ1 − b̂1ŝ1 + 3ρb̂1ŝ1 − (ŝ1)

2 + 2ρ(ŝ1)
2 + b̂1(ŝ1)

2 − 3ρb̂1(ŝ1)
2

b̂1 + ŝ1 + ρ+ 3ρb̂1ŝ1 − b̂1ŝ1 − 2ρb̂1 − 2ρŝ1
(23)
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The expression for the difference between posterior and prior beliefs about blast is given by
the symmetric expression, substituting b̂1 for ŝ1 and vice versa. Note that the denominators
are identical and always positive since it is simply P (y1 = 0), so I focus exclusively on the
numerator.

Due to the bounds of beliefs 0 ≤ ŝt, b̂t ≤ 1, the amount that a farmer can update depends
on their prior. To account for this mechanical limitation, the numerator from Equation 23
can be scaled to become a share of the potential scope for belief updating; in other words,
by dividing by |1− yt − ŝ1|.

ŝ2 − ŝ1
|1− y1 − ŝ1|

∝ ŝ1 − 2ρŝ1 − b̂1ŝ1 + 3ρb̂1ŝ1 − (ŝ1)
2 + 2ρ(ŝ1)

2 + b̂1(ŝ1)
2 − 3ρb̂1(ŝ1)

2

1− ŝ1
(24)

I factor out (1− ŝ1) from the numerator in Equation 25 to arrive at the simplified Equation
26.

ŝ2 − ŝ1
|1− y1 − ŝ1|

∝ (1− ŝ1)ŝ1 + (1− ŝ1)(−2ρŝ1) + (1− ŝ1)(−b̂1ŝ1) + (1− ŝ1)(−3ρŝ1b̂1)

1− ŝ1
(25)

ŝ2 − ŝ1
|1− y1 − ŝ1|

∝ ŝ1 − 2ρŝ1 − b̂1ŝ1 − 3ρŝ1b̂1 (26)

Since the expression for blast is symmetric, the expression for the relative difference between
posterior and prior beliefs along the two unobserved environmental dimensions is therefore
given by Equation 27. (

b̂2 − b̂1

)
|1− y1 − b̂1|

− (ŝ2 − ŝ1)

|1− y1 − ŝ1|
∝ (̂b1 − ŝ1)(1− 2ρ) (27)

Since ρ < .5 by assumption, the sign depends on the term (̂b1− ŝ1). When prior beliefs about
the likelihood of high salinity exceed initial beliefs about the chance of blast, then observing
low yield leads the farmer to disproportionately increase their beliefs about salinity relative
to blast.

Now, consider updating about the likelihood of high salinity after observing a good
harvest.

ŝ2 = P (s = 1|y1 = 1) =
P (s1)P (y1 = 1|s = 1)

P (y1 = 1)
(28)

Following the same procedure as in the case of a bad harvest, the posterior likelihood of salt
levels being high is given by Equation 29.

ŝ2 =
ŝ1(1− b̂1)ρ

ŝ1(1− b̂1)ρ+ b̂1(1− ŝ1)ρ+ (1− ŝ1)(1− b̂1)(1− ρ)
(29)

ŝ2 =
ŝ1ρ− b̂1ρŝ1

1− b̂1 − ŝ1 − ρ+ 2b̂1ρ+ 2b̂1ŝ1 + ŝ1ρ+ b̂1ρ− 3b̂1ρŝ1
(30)

Again noting that the denominator is always positive and identical in the case of salinity and
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blast since it is simply P (y1 = 1), I focus on the numerator. The change in salinity beliefs is
given by Equation 31.

ŝ2 − ŝ1 ∝ (ŝ1)
2 + 2ŝ1ρ− 2b̂1ρŝ1 − ŝ1 + b̂1ŝ1 − (ŝ1)

2ρ− 2b̂1ρŝ1 − 2b̂1(ŝ1)
2 + 3b̂1ρ(ŝ1)

2 (31)

Scaling to account for the mechanical restrictions due to the bounds on beliefs gives Equation
33.

ŝ2 − ŝ1
|1− y1 − ŝ1|

∝ ŝ1 + 2ρ− 2b̂1ρ− 1 + b̂1 − ŝ1ρ− 2b̂1ρ− 2b̂1ŝ1 + 3b̂1ρŝ1 (32)

As before, the change between posterior and prior beliefs about the likelihood of blast is
symmetric, substituting ŝ1 for b̂1 and vice versa. The relative change is given by Equation
33.

(̂b2 − b̂1)

|1− y1 − b̂1|
− (ŝ2 − ŝ1)

|1− y1 − ŝ1|
∝ (̂b1 − ŝ1)3ρ (33)

As before, the sign of this expression hinges on b̂1−ŝ1. Because this is the case of experiencing
a low yield (and thus farmers update their beliefs downward), the relative reduction in
likelihood for the default domain is smaller than that in the non-default domain. In other
words, a farmer who thinks salinity is more likely than blast going into period 1 will still
think that salinity is more likely than blast going into period 2 after observing a good yield,
even though both posteriors will be lower than the priors.

Combining the results from Equations 27 and 33 illustrates that after observing either
low yield or high yield, the rank ordering of beliefs is preserved. In other words, the default
domain exhibits path dependence and will always be the default domain. This proves Remark
1.

E.2 Extensions to Learning About Rainfall and Flooding

I have thus far focused on the case of learning about soil salinity (and other unobservable
environmental factors impacting agricultural production) from crop yield. The same intuition
can be easily extended to the cases of flooding and rainfall—the other main beliefs I study
in this paper—among other important decision-relevant dimensions of the environment.

In the case of flooding, farmers observe whether or not it floods in a given year. This
observed data—the equivalent of yt in the conceptual framework—can be consistent with
the high flood risk, medium risk, and low risk states, particularly given the relatively low
hazard rate of flooding even in areas with high latent risk. Any two of these dimensions
are equivalent to the blast fungus b and soil salinity s. Farmers face the same type of
identification problem, and their priors about whether latent flood risk is high or low will
shape how they interpret either the presence or absence of a flood.

Similarly, in the case of rainfall, farmers form predictions about the upcoming monsoon
season to inform important agricultural decisions. The truth is unobservable to farmers,
and thus instead they must rely on past experiences when forming their beliefs. The latent
rainfall distribution can be either high, medium, or low, and yet because any given observed
rainfall in a year could have been drawn from the support of either distribution, farmers face
a similar identification problem and will exhibit the same kind of path dependence.
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F Qualitative Evidence

F.1 Methodology

Main Sample Open-Ended Response Audio Recordings

I focus on audio recordings of four open-ended questions asked to the main sample during
the endline survey:

1. What are the biggest issues that you face in cultivating Boro rice?
2. How do you learn about the amount of salt in the soil of your plots?
3. What do you find hard about figuring out how much salt is in your soil? What do you

find easy about figuring out how much salt is in your soil?
4. Are you worried or not worried about salinity on your plots? Why or why not?

I transcribe and translate the responses to these questions.

Qualitative Interview Data Collection

I conducted qualitative interviews in six villages in the same upazilas of the main survey,
but no farmer in the main sample lived in any of these villages. The sampling frame mir-
rored the main survey to include all Boro season rice farmers, though within that set, the 40
farmers constituting the qualitative interview sample were recruited by convenience instead
of randomization from a listing. Interviews were conducted in June 2023, coinciding with
the launch of the endline survey. Most interviews lasted between 20 and 30 minutes and
were held outside, typically in common areas of the village. Shahriaz Ahmmed—a lecturer
in Development Studies at Khulna University—conducted consecutive translation to facili-
tate the interviews between myself and the farmers. All interviews were recorded, and the
transcriptions of these interviews form the basis of the data used in the coding procedure.

Interviews followed an in-depth narrative approach, which has a long and rich history in
social science research (see DeLuca et al. (2016) for more on this method and Bergman et
al. (Forthcoming) for a recent example from the economics literature). This method—which
emphasizes a natural, in-depth conversation over a series of questions and short answers—
has been shown to allow a wide range of responses to emerge through initial, open-ended
questions that lead to targeted follow-up. In the case of this study, the conversations primar-
ily focused on how farmers made agricultural decisions and their related economic concerns.
All interviews started and ended with the same pair of questions. I began by asking each
farmer, “How did your harvest go?” and concluded by asking “Do you have anything else to
share?” In between, the conversation ranged but largely focused on what farmers identified
as their biggest agricultural challenges, the choices they make to adapt to these obstacles,
and how they gather information to arrive at these decisions.

Qualitative Interview Data Coding Protocols

I took an inductive approach to coding the qualitative data, by first reviewing the corpus
of all interviews and noting the aspects of decision-making and learning that emerged as
most salient from farmers’ own accounts. I then coded all transcripts according to these
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themes, recording the frequency with which they were mentioned across all farmers in the
sample. The following paragraphs provide further detail on the coding protocols for each
theme.

Inference by Harvest Outcome: This code describes farmers who use the outcome of
their harvest to assess the degree of environmental threats on their land. I code interviews
under this theme even if farmers also use other signals to formulate their beliefs, as long as
they mention this particular data point explicitly as well.

Low Belief Uncertainty: This code covers farmers who reported who—when describing
environmental conditions on their land or the effectiveness of technology—emphasized the
certainty of their expectations. For instance, when describing the amount of salt on their
soil, a farmer in this classification would be very confident in their assessment.

Unwillingness to Switch from Boro Cultivation: This code captures farmers who—
when discussing potential margins of adaptation to environmental threats on their land—
stressed their unwillingness to ever stop cultivating rice during the Boro season, even if
conditions become particularly dire.

Confidence in Success of Salinity Adaptation Methods: This code applies to farm-
ers who report taking an adaptation step that they say fully corrects the salinity problem
after pointing out salinity issues on their land. Note that by construction, this code can
only possibly apply to farmers who recount a salt threat to their agricultural productivity.
Farmers falling under this category explicitly acknowledge that salinity would harm their
output had it not been for some measure they take, which they say has fully eradicated the
potential harm.

Reliance on Social Learning: This code includes farmers explicitly pointing to input
from others as the major factor in determining their agricultural decisions. I further classify
interviews by the source of this information: neighbors or family members in the same village,
or relevant local agricultural figures (agricultural extension officers or seed/fertilizer dealers).
Farmers typically mention this in the context of seed, fertilizer, and pesticide decisions.

Demand for Government Assistance: This code covers any farmer who brought up a
request for government support. This typically—though not always—was directly related
to agricultural production, and in particular often in the form of financial assistance, either
directly or through price controls for inputs. Sometimes, this also included demand for
information provided by the government. I also classify farmers under this theme if they
hold a pessimistic attitude towards government assistance; that is, they say bring up the
topic in the context of decrying the government’s current activities (for instance, in the
case of providing some farmers with free seeds but not others through a opaque or unfair
procedure).
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F.2 Qualitative Evidence Motivating Modeling Assumptions

This section presents additional quotations motivating the modeling assumptions used in
my theoretical framework. I organize the quotes based on the the same points made in the
set-up of Section 3.

Farmers cannot directly observe salinity

“How do we understand the amount of salt in the soil? We are not engineers. No, we
have no way of knowing whether the soil has salinity or not.”

“I find it difficult to estimate the level of salinity in the soil. I don’t understand easily
because I don’t have a machine.”

“I don’t have a soil test or salinity tester, and I can’t tell the salinity of the land by
looking at the soil.”

“If there is a machine then the matter of measuring salinity is easy. And if there is no
salt measuring machine then the matter seems difficult to me.”

“It is impossible to understand without testing the salinity. And we can’t understand by
looking.”

“ We can’t understand if there is salinity in the land where there is grass without testing
the machine.”

“We do not have the equipment to test. So we find it difficult to estimate the salinity
level.”

“ It is difficult to understand salinity by looking at bare land.”

Farmers rely on harvest output and physical plant characteristics to infer salinity

“It seems difficult to estimate the salinity level if the crop is good in the field. I can easily
estimate the level of salinity by looking at the appearance of the crop and the color change
of the soil.”

“When the paddy of my land is red in color, I can easily understand that my land is
definitely affected by salt. I don’t find anything difficult here. I can tell by looking at the
rice plant that it is affected by salt.”

“If the rice plant does not grow when planted in the land, the rice plant turns red and
dies, it is easy to understand that there is salinity in the land. It is difficult to understand
salinity by looking at bare land.”

“When the bunch of paddy plant turns red, we know that there is salinity in the land.
Besides, paddy plants become smaller and white salt floats on the ground. By looking at
these I basically estimate the salinity of the land.”

“We can understand the salinity level of the land by looking at the appearance of the
crops on the land. When the leaves of the rice plant turn red, white spots appear on the soil
and the rice plants wither. Then it is easy to understand that there is salinity in the land.”

“Rice plants do not grow due to salinity, rice plants turn red and rice plants die. Then I
realized that the amount of salt in the land is high.”

“The amount of salt in the soil can be understood. White salt appears on the soil after
planting rice plants when the rice plants die and the soil dries up. Then it is understood
that the salt content in the land is high. The amount of salt can be estimated by looking at
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these two things: soil and crops.”
“ “After planting the rice plant, when the rice plant becomes small, we understand that

the salt content in the land is high. And in saline land, the soil becomes excessively muddy
and soft. Besides, earthworm infestation is seen in saline land. By looking at these two signs,
we basically estimate the amount of salinity.”

“I find it difficult to understand salinity by looking at bare land. And when crops are
planted in the land and the appearance of the crops, the salinity of the land can be easily
understood. By seeing the crop after planting, we can tell whether the land is salinity or
not.”

The link between these signals and salinity is indirect

“When the leaves of paddy plants turn red in the land, it is easy to understand that there
is salinity in the land. And when rice plants are not growing well, it becomes difficult to
know whether the problem is due to salinity, soil or fertilizer.”

“After planting rice plants in the land, when the rice plants turn brown, it is easy to
understand that the salinity of the land has increased. And when the paddy plant gets a
little bigger and then if the paddy plant does not grow, it seems difficult to know whether
the problem is due to salinity or some other reason.”

“If white substance like salt is seen in the soil then it is easy to understand that salinity
level is high. And when the paddy plant dies, it becomes difficult.”

“After planting rice in the land, when the rice plants do not grow and are small in size,
it is easy to understand that there is salinity in the land. But when the paddy leaves turn
red, I find it difficult whether the problem is due to salinity or some other reason.”

“When the rice turns red it is easy to understand that it is due to salinity. When after
planting paddy in the land and applying proper fertilizers it is found that the crop is not
growing well and the crop is not being nourished then it is difficult to understand whether
it is actually due to salinity or some other reason.”

“If a white substance like salt appears in the soil when the soil is dry, it is easy to
understand that the salinity level is high. And if a disease occurs after planting paddy in the
land, it is difficult to understand whether the problem is due to salinity or for some other
reason.”

“If after planting paddy in the land, if the paddy does not grow and the paddy plants
are stunted, then it is easy to understand that the land has salinity. But when rice plants
turn yellow due to insect attack, it is not easy to understand whether the problem is due to
salinity or insect attack.”

G Structured Ethics Appendix
Following the guidance of Asiedu et al. (2021), this section presents a discussion of the

ethical considerations of the human subjects research conducted as part of this paper. I
discuss the two experiments involved in this project separately: RCT #1, the randomization
of saline tolerant seed prices as part of the BDM procedure of the baseline, and RCT #2,
the random provision of information about soil salinity during the endline survey.
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Policy Equipoise Is there policy equipoise? That is, is there uncertainty regarding par-
ticipants’ net benefits from each arm of the study relative to the other arms and to the best
possible policy to which participants could have access? If not, ethical randomization requires
two conditions related to scarcity: (1) Was there scarcity, i.e., did the inclusion of multi-
ple arms change the expected aggregate value of the programs delivered? (2) Do all ex-ante
identifiable participants have equal moral or legal claims to the scarce programs?

For RCT #1, policymakers hold genuine uncertainty as to how effective these saline-
tolerant seeds can be in real-world settings, and in particular, how the productivity may vary
with saline level. The scale of this experiment provides substantial new evidence outside
of controlled lab settings or example plots to assess the relative efficacy in a vulnerable
population preserving their agricultural techniques and decision-making for other inputs.

For RCT #2, while there can be little doubt that providing more information to farmers
is weakly beneficial, it remains an open policy question as to the magnitude of these benefits
and the format of delivery. The cost-benefit calculation behind a policy to collect soil salinity
data and provide that information to farmers hinges on the extent to which that information
might lead to meaningful behavior change and whether farmer-specific soil measurement is
necessary for achieving this impact or whether averages at higher geographic levels can also
be effective. This experimental design targets both parameters.

Role of Researchers with Respect to Implementation Are researchers “active” re-
searchers, i.e. did the researchers have direct decision making power over whether and how
to implement the program? If YES, what was the disclosure to participants and informed
consent process for participation in the program? Providing IRB approval details may be
sufficient but further clarification of any important issues should be discussed here. If NO,
i.e., implementation was separate, explain the separation.

The researcher is considered “active” and had direct decision-making power over all as-
pects of the experimental design for both RCT #1 and RCT #2. Informed consent was
elicited from all participants, as approved by Harvard’s IRB board.

Potential Harms to Participants or Non-Participants from the Interventions or
Policies Does the intervention, policy or product being studied pose potential harm to par-
ticipants or non-participants? Related, are participants or likely affected non-participants
particularly vulnerable? Also related, are participants’ access to future services or policies
changed because of participation in the study? If yes to any of the above, what is being done
to mitigate such risks?

For RCT #1, one potential concern is that the specific seed variety which I provide to
farmers as part of the BDM procedure could cause harm to farmers’ output. Several factors
help alleviate this worry. First, the government is actively trying to distribute these same
seed varieties in many of the areas I survey, often by giving out 10 kilogram packets for free.
Due to scarce government resources however, the scope of this effort is significantly limited.
In one sense, this experiment can be viewed as an extension of an existing government
program, albeit at a smaller scale. Second, the enumerator instructions deliberately avoid
making any normative statements about whether the farmer should use the seed. Instead,
they simply report that “this seed has been designed to grow well even if the soil has a
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lot of salt in it”, echoing the description used by the government’s Agricultural Information
Service when describing this variety. Third, the WTP elicitation for the seed comes after
the BDM mechanisms for a pen, a plate, and a store voucher. To the extent that these
standard goods do not have a clearly interpretable normative position, farmers were primed
to treating the exercise as a true willingness-to-pay. Fourth, while BRRI 67 grows well in
high salinity environments, it grows no worse in low salinity environments. Therefore, even if
farmers are overestimating the amount of salt in their soil, their harvest will not be especially
negatively impacted if they use the seed. However, it should be noted that other seeds that
farmers may use instead in the case of a low saline soil could have other appealing attributes,
such as taste or relatively higher yield, and thus harvest may still be lower compared to the
counterfactual seed choice. Finally, by only providing one kilogram of seeds, I further help
to mitigate this risk, as farmers would likely diversify to other seeds if they had not been
planning on using BRRI 67 already.

For RCT #2, one potential concern is that I might accidentally provide erroneous infor-
mation about soil salinity to respondents. This is particularly relevant given the surprising
results of the handheld EC-meters showing low levels of salinity: if salinity is in fact higher
than I measure, then I may inadvertently mislead farmers, which could result in worse de-
cisions in the future. I take several steps in an attempt to mitigate this risk. First, I take
considerable steps to ensure that the soil salinity measures accurately capture the amount
of salt on each farmer’s plot. These steps—detailed further in section B.2—include repeated
measurements and validation using a controlled lab test. Second, when providing the infor-
mation to farmers, enumerators emphasize the generalizability of the measurement, saying:
“These numbers are based off of the measurements we took this past season. The amount of
salt in the soil can change, so it may be different next year.” Third, the records I obtain from
the government’s soil measurements (noting that they only collect data from 10 plots) match
the same patterns I find, indicating that indeed, the 2022-23 season exhibited strikingly low
salinity levels.

Potential Harms to Research Participants or Research Staff from Data Collec-
tion or Research Protocols Are data collection and/or research procedures adherent to
privacy, confidentiality, risk-management, and informed consent protocols with regard to hu-
man subjects? Are they respectful of community norms, e.g., community consent not merely
individual consent, when appropriate? Are there potential harms to research staff from con-
ducting the data collection that are beyond “normal” risks?

Yes. This research received IRB approval from Harvard University. Data collection posed
no unusual risks to research staff.

Financial and Reputational Conflicts of Interest Do any of the researchers have
financial conflicts of interest with regard to the results of the research? Do any of the re-
searchers have potential reputational conflicts of interest?

No.

Intellectual Freedom Were there any contractual limitations on the ability of the re-
searchers to report the results of the study? If so, what were those restrictions, and who were
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they from?
No.

Feedback to Participants or Communities

Is there a plan for providing feedback on research results to participants or communities?
If yes, what is the plan? If not, why not?

Yes. The results of both experiments and the trends in salinity over the 2022-23 season
were shared with participants prior to the 2023-24 Boro planting. I consulted with G. M.
Mustafizur Rahman of the Soil Research Development Institute to ensure that the informa-
tion I provided farmers was consistent with the best available guidance from the government.
The text of the script read by enumerators is as follows: “The amount of soil salinity can
change from year to year. Last year, the amount of soil salinity in Khulna division was
much lower than it had been in previous years. It is difficult to know whether it will be low
again in the future. But it is clear that last year was low relative to what it had been in the
past. Because last year’s salinity levels were so low, the farmers who planted more of their
land with salinity-tolerant seeds actually earned less money than the farmers who planted
different seeds. If the amount of salinity on the soil had been higher, then it might have
been better to plant the salinity tolerant seeds. But because it was low, that year, those
seeds were not as profitable. It is hard to know what the soil salinity will be next year. In
general, when soil salinity is very high, it is better to plant salinity tolerant seeds, and when
soil salinity is very low, it is better to plant a different kind of seed. In coastal areas, the
government recommends planting salinity tolerant seeds.”

Foreseeable Misuse of Research Results Is there a foreseeable and plausible risk that
the results of the research will be misused and/or deliberately misinterpreted by interested
parties to the detriment of other interested parties? If yes, please explain any efforts to
mitigate such risk.

No.

Other Ethics Issues to Discuss Are there any other issues to discuss?
No.
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